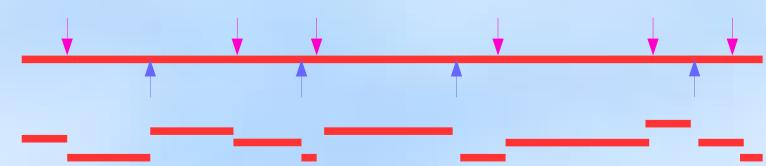



"Analytical power and biases of double digestion RAD (ddRAD) genotyping by sequencing in three european marine aquaculture species"

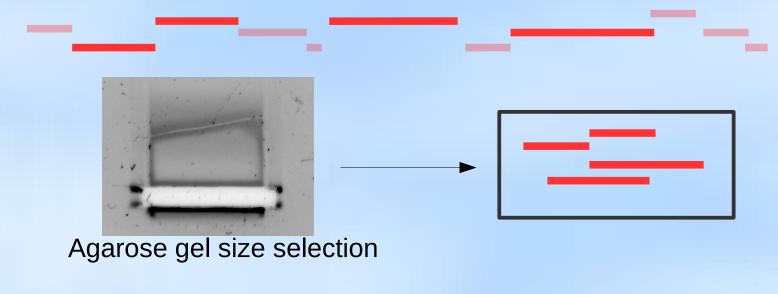
Maroso, F.^{a,b}, Hermida, M.^b, Pardo, B. G.^b, Carr, A.^c, Franch, R.^a, Martínez, P.^b, Bargelloni, L.^a ^a Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, 35020, ITALY ^b Departemento de Genética, Universitade de Santiago de Compostela, Campus de Lugo, SPAIN ^c Fios Genomics Ltd., Edinburgh BioQuater, Edinburgh EH16 4SB, UK



dd-RAD sequencing protocol

Reduce genome complexity (< 1‰):

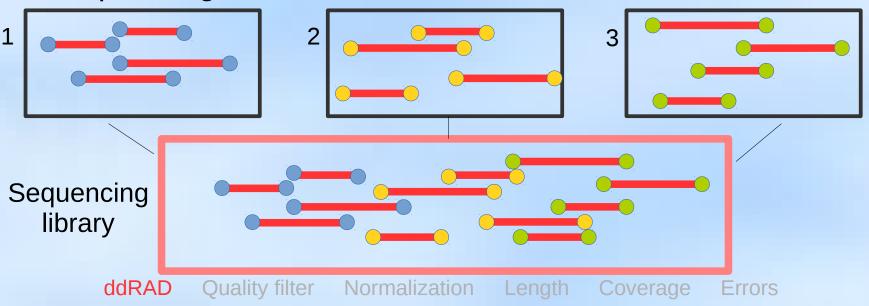
DNA cut with two enzymes



dd-RAD sequencing protocol

Reduce genome complexity (< 1‰):

- DNA cut with two enzymes
- Fragments selected by size (approx. 300-600 bp)

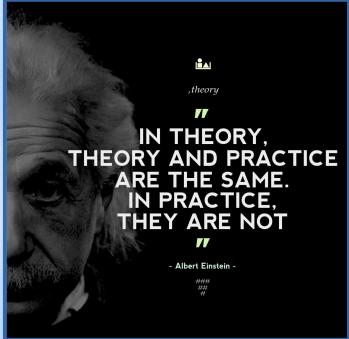


dd-RAD sequencing protocol

Reduce genome complexity (< 1‰):

- DNA cut with two enzymes
- Fragments selected by size (approx. 300-600 bp)
- Samples pooled (144). Barcoding to recognize them after sequencing

Francesco Maroso, PhD student



From Theory to Practice: loss of information and genotyping biases

Several steps causing loss of information and analytical power:

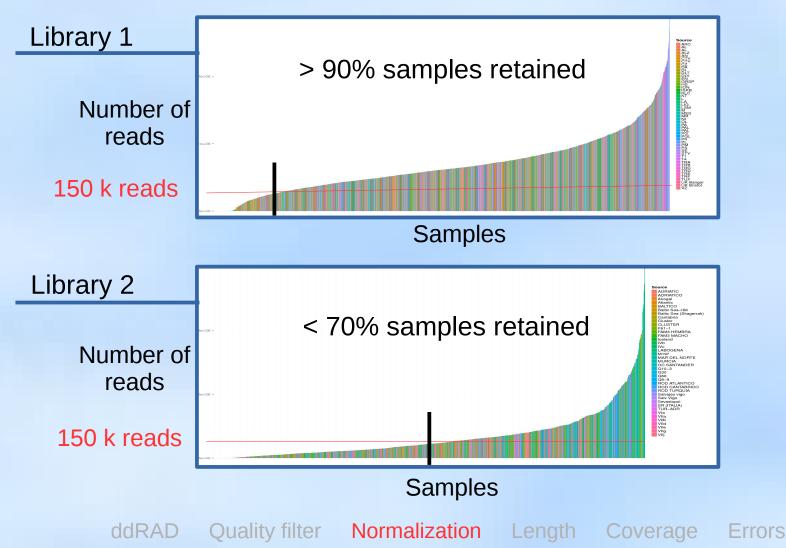
- Quality filtering of sequenced reads
- Normalization of samples within library
- Fragment length and coverage
- Genotyping bias

Sequencing and quality filtering

- Illumina HiSeq technology (100 bp, pair end), throughput of 120 M reads
- Quality filter: 10-50% (average 25%) reduction in the number of reads

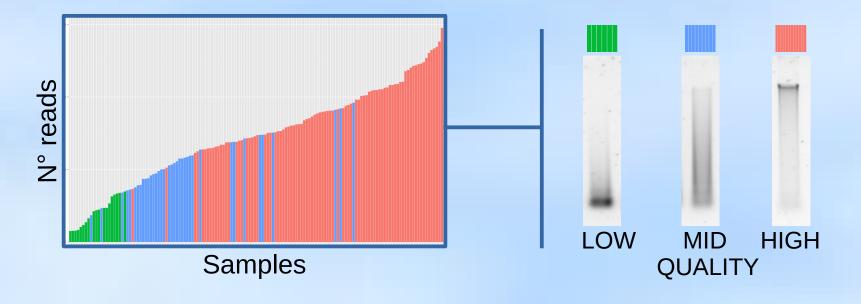
Quality of normalization

- Not all samples represented by same number of reads
- Threshold of 150'000 reads → samples genotyped for at least 80% loci
- Between 7%-30% samples with less than 150k reads, depending on the libraries



Francesco Maroso, PhD student

Quality of normalization



Quality of normalization

- Laboratory procedures can affect the quality of the normalization (pipetting accuracy, DNA quantification...)
- Correlation between DNA degradation and N° reads

Bioinformatic pipeline (STACKS package)

- 3-4 replicates/species in all libraries (10-14)
- Reads are trimmed \rightarrow loss of sequenced bp:
 - Last 3 bp removed (lower quality)
 - Barcodes at the beginning of the sequence (7 bp)
 - Enzyme recognition site (5-6 bp) \rightarrow not variable!

total 15 bp

Bioinformatic pipeline (STACKS package)

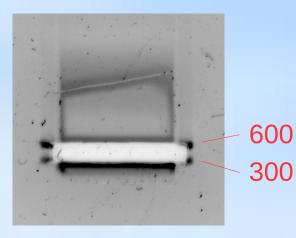
- 3-4 replicates/species in all libraries (10-14)
- Reads are trimmed → loss of sequenced bp:
 - Last 3 bp removed (lower quality)
 - Barcodes at the beginning of the sequence (7 bp)
 - Enzyme recognition site (5-6 bp) \rightarrow not variable!
- Aspects to take in consideration:

Fragment length

Coverage depth

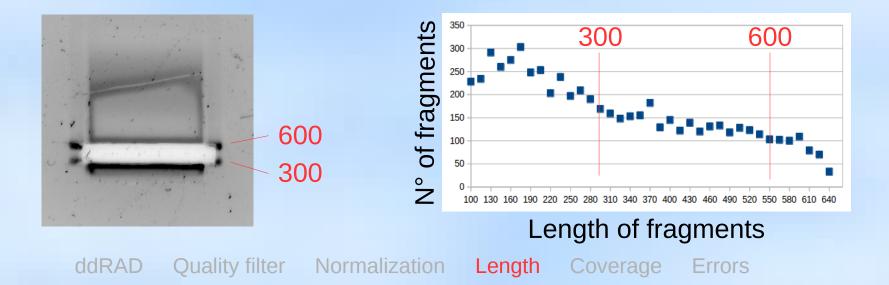
total 15 bp

Errors


Francesco Maroso, PhD student

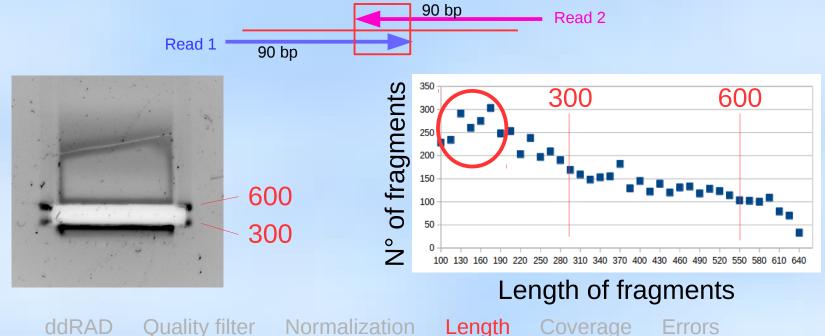
Length of fragments

• 300-600 bp agarose gel size selection



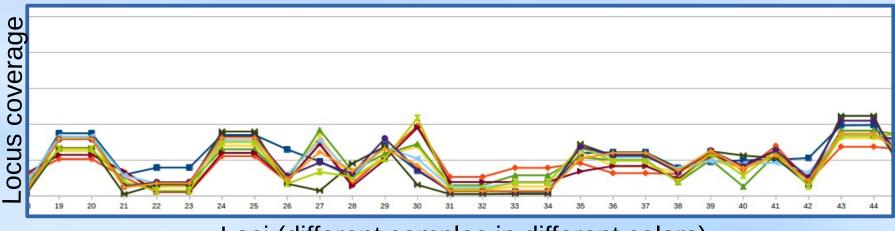
Length of fragments

- 300-600 bp agarose gel size selection
- Actual fragment length range (from mapping position) is wider



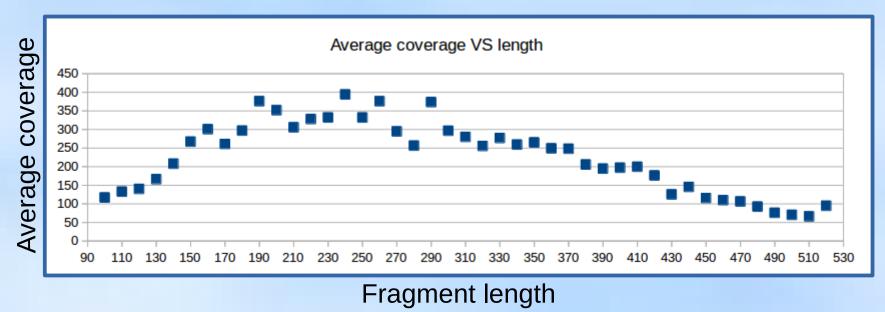
Length of fragments

- 300-600 bp agarose gel size selection
- Actual fragment length range (from mapping position) is wider
- Around 20% of the fragments <180 bp (overlapping)



Coverage and fragment length

- Correlation between different loci and coverage per sample
- Depth of coverage is not homogeneous within fragment of different lengths


Loci (different samples in different colors)

Coverage and fragment length

- Correlation between different loci and coverage per sample
- Depth of coverage is not homogeneous within fragment of different lengths

Analysis of genotyping errors

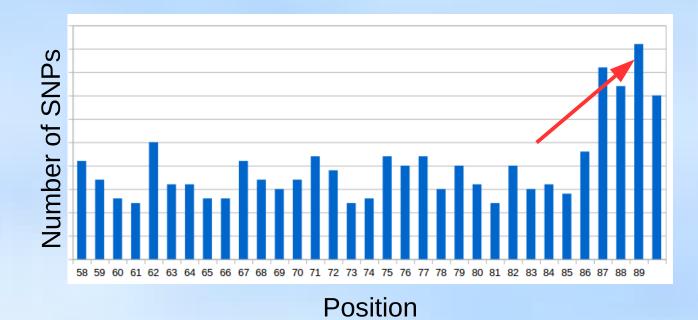
- The most frequent genotype was considered as the "correct" one
- 'de-novo' VS 'reference genome based' approaches compared

	•					
Sea bream	Analysis	rxstacks	Tags	SNPS	Markers	% ERROR
	DENOVO	Ν	3913	2970	1263	1,17
	DENOVO	Y	2353	1175	557	2,43
	REF	Ν	4753	1943	1341	0,30
	REF	Y	3729	1363	960	0,13
Sea bass	DENOVO	Ν	1673	639	389	2,83
	DENOVO	Y	1631	546	349	2,80
	REF	Ν	3162	1012	780	2,07
	REF	Y	3118	952	747	1,82

Analysis of genotyping errors

- The most frequent genotype was considered as the "correct" one
- 'de-novo' VS 'reference genome based' approaches compared

	Analysis	rxstacks	Tags	SNPS	Markers	% ERROR	
Sea bream	DENOVO	Ν	3913	2970	1263	1,17	
	DENOVO	Y	2353	1175	557	2.43	
	REF	N	4753	1943	1341	0,30	
	REF	Y	3729	1363	960	0,13	
	DENOVO	Ν	1673	639	389	2,83	
Sea bass	DENOVO	Y	1631	546	349	2.80	
	REF	Ν	3162	1012	780	2,07	
	REF	Y	3118	952	747	1,82	
	ddRAD Qu	ality filter	Normalization	Length	Coverage Er	rors	



Francesco Maroso, PhD student

Position of SNPs

• The number of biased genotypes increased toward the end of the reads, in particular at the very last 4 bp

Position of SNPs

- Repetitions cause a shift in the sequences and may introduce false SNPs calling
- To a lesser extent, can be due to PCR/bridge amplification errors

SEQUENCING FRAME

Position of SNPs

- Repetitions cause a shift in the sequences and may introduce false SNPs calling
- Biased tags can be identified and eliminated from final analysis (e.g Stacks' 'markers blacklist')

SEQUENCING FRAME

ISGA2015 Francesco Maroso, PhD student

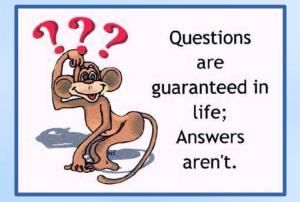
Take home...

New genotyping technologies allow faster, cheaper and more accurate analysis than ever before; continue improvement...

From theory to practice

On average 55% of the total RAW information are actually used in the analysis

- More accuracy with reference genome
- 'blacklist' loci with repeats to reduce error rate



Santiago de Compostela, 21-26 June 2015

"Analytical power and biases of double digestion RAD (ddRAD) genotyping by sequencing in three european marine aquaculture species"

Maroso, F.^{a,b}, Hermida, M.^b, Pardo, B. G.^b, Carr, A.^c, Franch, R.^a, Martínez, P.^b, Bargelloni, L.^a ^a Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, 35020, ITALY ^b Departemento de Genética, Universitade de Santiago de Compostela, Campus de Lugo, SPAIN ^c Fios Genomics Ltd., Edinburgh BioQuater, Edinburgh EH16 4SB, UK

THANK YOU FOR LISTENING!

