Tilapias Using ddRADseq

Mochamad Syaifudin, Michael Bekaërt , John B Taggart, Gideon Hulata¹, Helena D'Cotta², Jean-François Baroiller², David J Penman and Brendan J McAndrew

¹ ARO, Volcani Center, Israel; ² CIRAD, Montpellier, France

Koka Lake

Introduction

Tilapia Lineage

- a subdivision of the family Cichlidae, consisting of three genera with at least 70 species
- found throughout Africa and into the Middle East

Haplochromine

Tilapiine

Tilapia (substrate spawners, biparental)

T. zillii

т. rendalli

S. melanotheron

n S. galilaeus

(mouthbrooding, maternal)

Oreochromis

Sarotherodon

(mouthbrooding, biparental +

paternal care)

O. aureus O. niloticus O. mossambicus

WILD

Introgression in Africa:

- T. zillii and T. guineensis in the Ivory Coast
- Introduced O. niloticus and native O. esculentus in L. Victoria, leading to loss of native species

Introgression elsewhere:

 High degree of mixing between O. mossambicus and O. niloticus in Southern Sri Lanka.

> Meristic and morphometric characteristics show variation and broad interspecific overlaps

Hybrid

Occurrence

Genomic differences between species

- Species-diagnostic DNA markers
- Management applications

FARM

In China, about 1/3 of the production is an F1 hybrid :

O. niloticus x O. aureus

Red hybrids (multispecies, multigeneration)

Objectives

To look for species-specific markers, that distinguish between tilapia species.

> A species-diagnostic SNP marker is one that has one allele unique for a given species (e.g. allele "A" for O. niloticus, "T" in all other species)

To construct phylogenetic tree(s) among tilapia based on common SNP markers

To verify tilapia species status of our samples using mtDNA COI gene ("Barcode of Life")

To analyse the distribution of diagnostic SNP markers in the reference genome

Materials

No	Species/sub species	Strain/ Population	Origin	n
1.	O. niloticus			
	a. niloticus	Stirling	L. Manzala, Egypt	6
		Kpandu & Nyinuto	Ghana	24
	b. <i>cancellatus</i>	Hora, Koka,Metahara	Ethiopia	33
2.	O. mossambicus	a. Stirling	Zimbabwe	5
		b. Natal	South Africa	10
3.	O. aureus	a. Stirling	L. Manzala, Egypt	5
		b. Ain Faskha	Israel	10
4.	O. karongae	Stirling	L. Malawi	5
5.	O. u. hornorum	Israel	Israel	5
6.	O. andersonii	Itezhi-tezhi	Zambia	6
7.	O. macrochir	Itezhi-tezhi	Zambia	4
8.	S. galilaeus	Israel	Israel	5
9.	S. melanotheron	Ghana		4
10.	T. zillii	a. Stirling	L. Manzala, Egypt	5
		b. Ghana	Ghana	5
	Total samples			132

Double Digest RAD Sequencing (ddRADseq)

3'

G С

Quantified DNAs

SNP Diagnostic Marker & Physical Map

METHOD DNA BARCODE - COI

Samples Collection

DNA Extraction

FishF1-5'TCAACCAACCACAAAGACATTGGCAC3' FishF2-5 TCGACTAATCATAAAGATATCGGCAC3 FishR1-5 TAGACTTCT000T00CCAAAGAATCA3 FishE2-5"ACTECAGGOTGACCGAAGAATCAGAA3"

Polymerase Chain Reaction

Protected of	
	Selli A Main Mail
· PLATE	NIPARACILIA 2000
· PLATE ****************	NIMPORT CONTRACTOR
a month at the output to the set	and a second second second
	M. M. Markey
a month 11 11 11 11 11 11 11 11 11 11 11 11 11	moundance
	and war and war
4 MILLION AND AND AND AND AND AND AND AND AND AN	- china herbe
	and an and the state

Purification and Sequencing

DNASTAR

Mega5.2.2

FigTree v1.4.0

Data Analysis

Results – de novo Analysis

O. mossambicus, NSA

Results – Reference Genome-Based Analysis

ddRADseq

109,287,766 raw reads

8,364 unique RAD-tags

Screen RAD loci against O. niloticus genome assembly

635 SNPs in 372 RAD loci

mtDNA COI Gene Tree

mtDNA COI Gene Tree

Largely agrees with previous publications based on allozymes and other mtDNA sequence, but:

- W. African O. niloticus group with O. aureus
- Sarotherodon clustered with Oreochromis
- Could not separate O. macrochir and O. andersoni

only one marker

Genomic Distribution of (RBA) Species-Diagnostic Markers

- The markers were found across all linkage groups, apart from LG3
- LG3 is physically the largest chromosome, but is the smallest in the current genome assembly – contains lots of repetitive DNA

LG	Physical size of LG (bp)	Oau	Oka	Omo	Oni	Our	Oan	Omac	Smel	Sga	Tzi	Total	Number of SNP/Mb
1	31,194,787	0	0	0	2	0	0	0	3	0	2	7	0.22
2	25,048,291	0	0	0	1	0	0	0	3	1	0	5	0.20
3	19,325,363	0	0	0	0	0	0	0	0	0	0	0	0.00
4	28,679,955	0	0	0	0	0	0	0	0	1	2	3	0.10
5	37,389,089	3	0	0	0	0	0	1	4	1	3	12	0.32
6	36,725,243	1	2	0	0	0	0	1	4	3	2	13	0.35
7	51,042,256	0	0	0	0	1	0	1	1	2	2	7	0.14
8_24	29,447,820	1	2	1	1	0	0	1	2	3	2	13	0.44
9	20,956,653	0	1	0	0	0	0	0	1	0	1	3	0.14
10	25,048,291	0	0	0	0	0	0	0	1	0	2	3	0.12
11	33,447,472	0	0	0	0	0	0	0	4	1	1	6	0.18
12	34,679,706	1	0	0	0	0	1	1	0	2	0	5	0.14
13	32,787,261	4	0	1	1	0	0	0	2	1	5	14	0.43
14	34,191,023	0	1	0	0	0	0	0	2	0	3	6	0.18
15	26,684,556	1	0	0	2	0	0	0	2	1	1	7	0.26
16-21	34,890,008	1	1	0	1	0	1	0	2	3	3	12	0.34
17	31,749,960	0	1	0	2	0	0	0	3	2	0	8	0.25
18	26,198,306	0	0	0	0	3	0	0	1	0	0	4	0.15
19	27,159,252	0	1	0	0	0	0	1	1	1	2	6	0.22
20	31,470,686	1	0	2	0	0	1	0	2	0	0	6	0.19
22	26,410,405	2	1	0	1	0	0	0	1	2	0	7	0.27
23	20,779,993	3	0	0	1	1	0	0	1	1	1	8	0.38
Total	665,306,376	18	10	4	12	5	3	6	40	25	32	155	1.02

LG = Linkage Group, equivalent to a chromosome, here based on the current *O. niloticus* genome assembly

Species-Diagnostic SNP Markers (1)

- A species-diagnostic SNP marker is one that has one allele unique for a given species
- This analysis is based on all ten species and RBA
- 3-40 diagnostic markers per species

Species	n	Diagnostic SNP markers
T. zillii	10	32
a. Stirling	5	
b. Ghana	5	
S. melanotheron	4	40
S. galilaeus	5	25
O. niloticus	63	12
a. O. n. niloticus	30	
b. O. n. cancellatus	33	
O. mossambicus	16	4
a. Stirling	6	
b. Nathal, SA	10	
O. aureus	15	18
a. Stirling	5	
b. Ain Feskha, Israel	10	
O. karongae	4	10
O. u. hornorum	5	5
O. macrochir	4	6
O. andersonii	6	3
Total	132	155

Species-Diagnostic SNP Markers (2)

- This analysis is based on just the four species most commonly involved in hybridization in aquaculture
- 42-104 diagnostic markers per species

Species	n	Diagnostic SNP markers
O. niloticus	63	42
a. O. n. niloticus	30	
b. O. n. cancellatus	33	
O. mossambicus	16	104
a. Stirling	6	
b. Nathal, SA	10	
O. aureus	15	89
a. Stirling	5	
b. Ain Feskha, Israel	10	
O. u. hornorum	5	90
Total	99	325

Conclusions

- Analysis of ddRADseq data from tilapia species detected large numbers of species-diagnostic SNP markers among the species studied, distributed across the genome
- Species-diagnostic markers from this analysis should be robust across the species and thus of utility in analysing hybrids/introgressed populations
- Genotyping by sequencing is likely to be the most cost-effective and robust way of analysing species and potential hybrids (<£10 per individual)

Thank you for your attention!!!

UN 270 1000 Dis 1000 2000

THUI