Economic and environmental impacts of genetic improvement

Mathieu Besson

Hans Komen, Marc Vandeputte, Joel Aubin, Imke de Boer, Edwige Quillet and Johan van Arendonk

Challenges facing fish farming

Effect of genetic improvement on profit and environmental impacts?

How to estimate economic and environmental values?

Bioeconomic model

Life Cycle Assessment

- Goal and scope
- Cradle to farm gate analysis Functional unit = 1 t of fish
- Impacts categories
- Climate change (CO₂)
- Eutrophication
- Acidification
- Cumulative energy demand

Quota (farm)

• Bio-filter capacity (farm)

Traits and ΔG

Thermal growth coefficient (TGC)6.8% per generation

Feed conversion ratio (FCR)

7.8% per generation

(Sae-Lim, Komen et al. 2012)

Results

Higher production

Nb of batch

=> dilutes fixed environmental and economic costs

Higher production efficiency

=> decreases inputs with same production

EV and ENV in RAS

Limiting factor	ENV growth	ENV _{FCR}
Bio-filter (farm)	0 %	
Density (batch)	-	-

EV and ENV in sea cage

Limiting factor	ENV _{growth}	ENV _{FCR}
Quota (farm)	0 %	-
O ₂ (batch)	0/-	

Conclusion

- Constraints at farm level -> EV_{growth} ENV_{growth} = 0
- Constraints at batch level -> EV_{growth} ENV_{growth} >0
- EV_{FCR} and ENV_{FCR} always very good
- Next step => include EV and ENV in breeding program

