

Genetic parameters for the operculum and jaws deformities in larvae of gilthead seabream (*Sparus aurata*, L. 1758)

Batargias C., Fragkoulis S., Loukovitis D., Tzokas K., and Koumoundouros G.

TEI of Western Greece

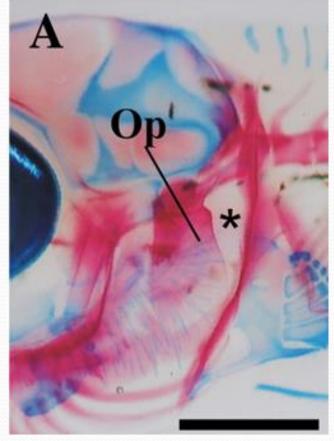
YOUR NEARBY SEA FISHERMAN

University of Crete

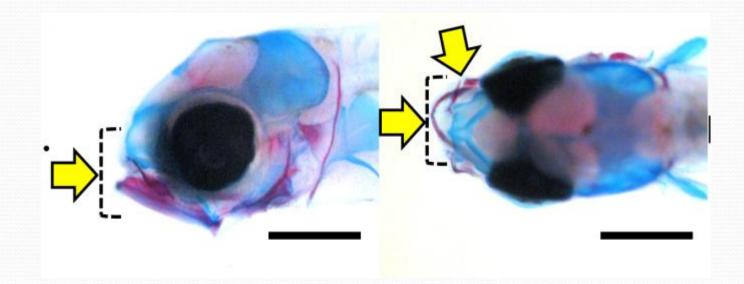
ISGA XII, Santiago de Compostela, 21st-27th June 2015

Deformities

• Skeletal deformities are a major problem of product quality in finfish aquaculture downgrading the product value



Operculum deformities


The most common deformity is inside folding, atrophy or/and overossification

There is a significant temperature effect on the development of the deformities (Georgakopoulou *et al.* 2010)

(Georgakopoulou et al. 2010)

Jaw deformities

- ✓ Significant alteration of the external morphology
- ✓ The most common deformity is the reduction of the jaw length and the lateral displacement of the jaws

Causes of Deformities

- Their development is often attributed to the environmental conditions:
 - > Light
 - > Temperature
 - ➤ Salinity
 - >Hydrodynamic variables
 - > Nutrition

Is there any genetic basis of Deformities?

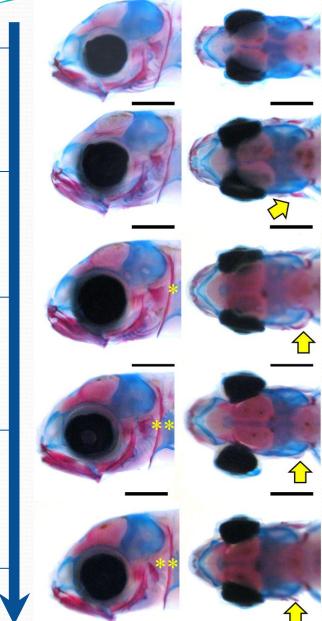
	Lordosis	Vertebral fusion	Jaw deformities	Lack of
Castro <i>et al.</i> 2008	0.021±0.019			0.032±0.023
Bardon <i>et al</i> . 2009	0.33±0.06 (<i>D. labrax</i>)			
Lee-Montero <i>et al</i> . 2014	0.16-	-0.41 (0.00-0.05	0.06–0.11
García-Celdrán <i>et al.</i> 2014	0.58±0.18			0.19±0.13
Negrín-Báez <i>et</i> al. 2015	0.34±0.03	0.40±0.07		0.46±0.11
Negrín-Báez <i>et</i> (<i>al</i> . 2015 (QTL)	1 (1)	1 (2)	1 (1)	>

Aim of the present study

• Existing studies usually record these traits at advanced developmental stages, ignoring the fact that the majority of the skeletal deformities originate during the first ontogenetic period

> In the present study, we focused on the early ontogenetic period (larvae) and recorded deformities of the operculum and the jaws.

- i. Anatomic characterization of the deformities
- ii. Estimation of the genetic parameters

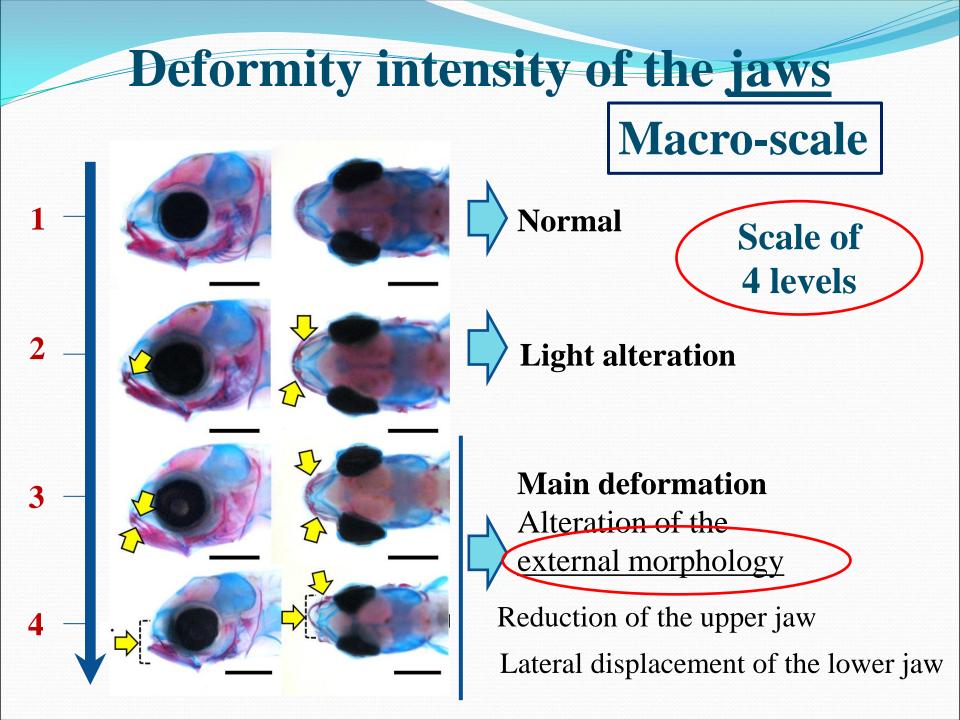

Broodstock (64 $\stackrel{?}{\circ}$ x 63 $\stackrel{?}{\circ}$)

4 consecutive spawning days

Eggs hatched and reared up to 39 dph

1400 larvae → stained for bone and cartilage and phenotyped & genotyped

Deformity intensity of the operculum



Light alteration Dislocation

Main alteration

Inside folding / reduction of the operculum

3-5 levels based on the intensity of the deformity \rightarrow <30%, 30-50%, >50%

Scale of deformity intensity of the jaws

Micro-scale

Scale of

4 levels

Normal

Main deformation Anatomic alteration of the mandibular and premandibular bones

<u>11 distinct deformities (of 7</u> <u>individual elements)</u> Levels: 4

Parentage

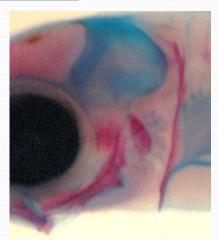
Set of nine microsatellites (multiplexed) Parentage allocation with exclusion method

Family characteristics of the pedigree structure obtained

	Full-sibs	Maternal Half-sibs	Paternal Half-sibs
N of families	282	58	51
Mean family size	4.9	24.1	27.5
Min	1	2	1
Max	39	114	124

Data analysis

➤ Univariate animal model
➤Y = Xb + Za + e → (on the observed scale)


Genetic correlations were estimated with multivariate animal model

Heritability estimates were transformed to the underlying liability scale

Low heritability estimates for the operculum deformities

Trait	$h^2 \pm SE$
TL (mm)	0.259 ± 0.060
Def. Degree LEFT	0.013 ± 0.019
Def. Degree RIGHT	0.039 ± 0.025
Sum ALL	0.020 ± 0.021

TL: Total length Def. Degree LEFT/ RIGHT: The scale of intensity Sum ALL: the sum of both sides

High heritability estimates for the jaw deformities "d6-d7"

Trait	$h^2 \pm SE$		
d1+d6+d7	0.049 ± 0.032		
d6+d7	0.219 ± 0.059		
Sum ALL	0.027 ± 0.026		
Macro-scale	0.115 ± 0.041		
	d1+d6+d7 d6+d7 Sum ALL		

Some deformity scores on micro-scale create noise

➢ It is important to study the correct deformity as a trait to improve

Sum ALL: the sum of scores on Micro-scale

Heritability estimates for the jaw deformities (observed & liability scale)

	h2	h2
Trait	(observed scale)	(underline liability scale)
d1	0.050	0.102
d2	0.047	0.486
d3	0.077	0.157
d4	0.054	0.319
d5	0.058	0.372
d 6	0.166	0.533
d7	0.162	0.331
d8	0.042	0.106
d1+6+7	0.049	0.415
d6+7	0.203	0.32
d2+3+4+5+8+9	0.094	0.157
d1+2+3+4+5+8+9	0.050	0.39
d1+2+3+4+5+6+7+8+9+11	0.056	0.85
d1+2+3+4+5+6+7+8+9+10+11	0.055	0.785

Negative correlations between size and jaw deformities

								Macro-	
ALL	TL	SUMall	Score5	Score1	Score2	Score3	Score4	scale	
TL	0.21	-0.39	-0.39	-0.22	-0.01	-0.36	-0.40	-0.33	
SUMall	-0.32	0.04	1.00	0.67	0.22	0.82	0.94	0.57	
Score5	-0.29	1.00	0.04	0.67	0.22	0.82	0.94	0.57	
Score1	-0.80	0.33	0.32	0.05	0.42	0.14	0.55	0.33	
Score2	-0.24	0.33	0.36	0.50	0.20	-0.03	-0.11	0.32	
Score3	0.29	0.76	0.78	-0.33	0.06	0.05	0.85	0.48	
Score4	-0.10	0.71	0.70	-0.01	-0.40	0.69	0.03	0.45	
Macro-									
scale	-0.40	0.94	0.93	0.41	0.28	0.65	0.71	0.10	
	\cup							r _P	
	-						r	12	
							r _G		

Thank you for your attention

TEI of Western Greece

AndromedaGroup

YOUR NEARBY SEA FISHERMAN

University of Crete

ISGA XII, Santiago de Compostela, 21st-27th June 2015