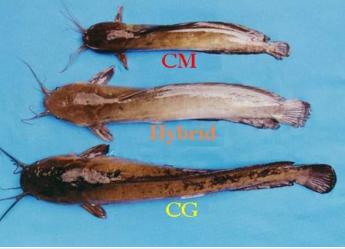
Effects of strain on growth performances of triploid Thai walking catfish, *Clarias macrocephalus*

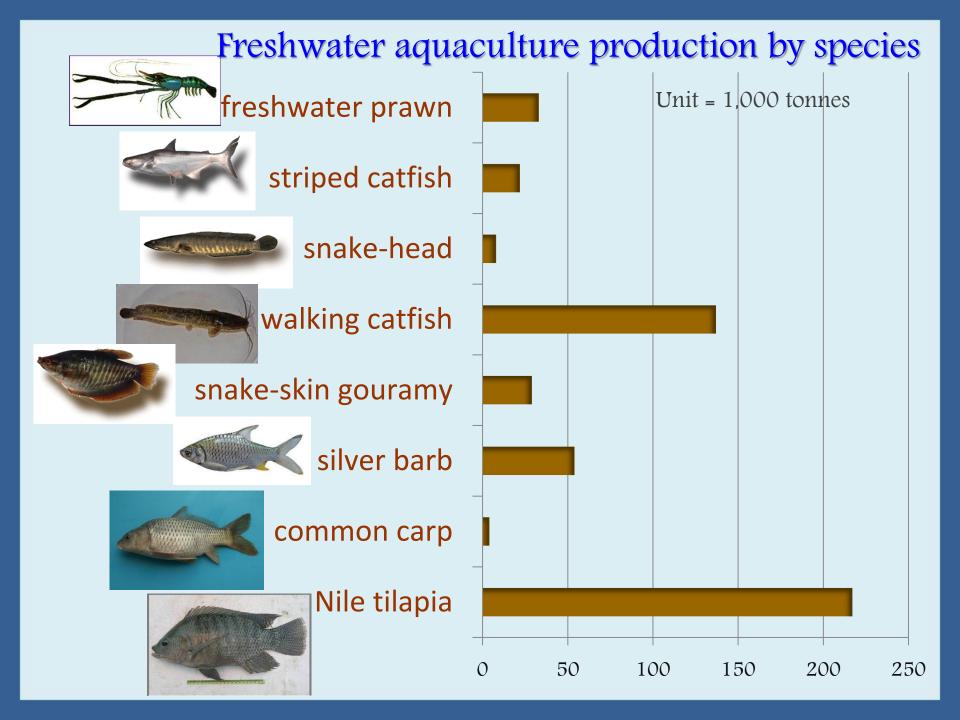
Satid Chatchaiphan¹, Prapansak Srisapoome² and Uthairat Na-Nakorn^{2*}


¹ Program in Aquaculture, Graduate School, Kasetsart University, Thailand
² Department of Aquaculture, Faculty of Fisheries, Kasetsart University

Advantages of triploids

http://www.rivergwashtroutfarm.com/





http://www.coastseafoods.com/

Thai walking catfish

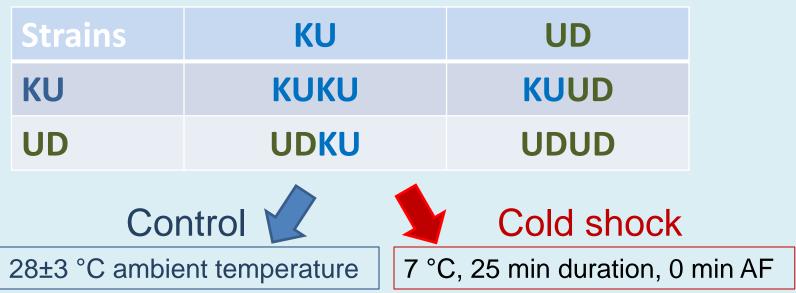
Previous studies on triploid Thai walking catfish showed different results.

Na-nakorn & Lakaanantakun(1993) diploids > triploid

□ Fast et al. (1995) triploids > diploid

Clarius fuscus: triploids > diploids (Qin *et al.*, 1998)
Clarius gariepinus: triploids = diploids (Henken et al., 1987)

Framework of the project


effects of strains on triploid performances mechanisms of the growth differences

mechanisms of sterility

Objectives

To study effects of parental strains on performance of triploids

Materials and Methods

Growth trial

30-60 D: 4 replicates in fibre glass tanks (1x1.5 m²) 500 fry/tank

61-240 D: 4 replications in concrete tanks (1x2 m²) at 75 fingerlings/tank

Data collection: BW, BL, AGR, SGR, condition factor

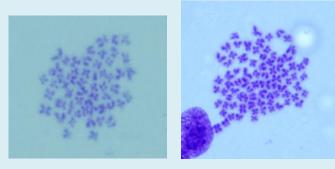
Sterility

Gonadosomatic indices at 240 D

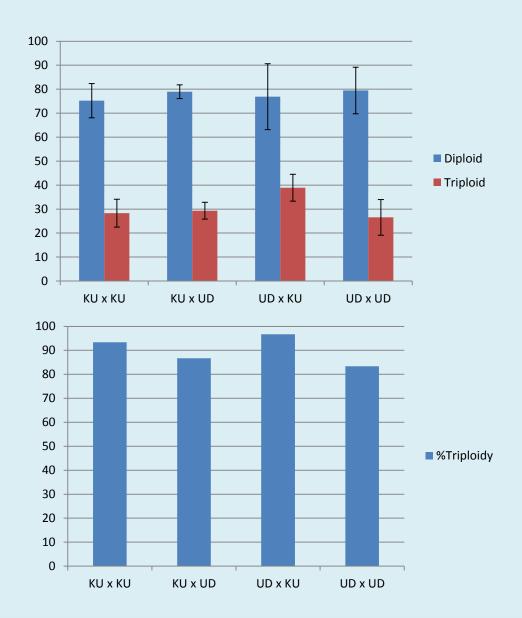
Data analyses

 $y_{ijk} = \mu + S_i + D_j + T_k + (SxD)_{ij} + (SxT)_{ik} + (DxT)_{jk} + (SxDxT)_{ijk} + e$

where

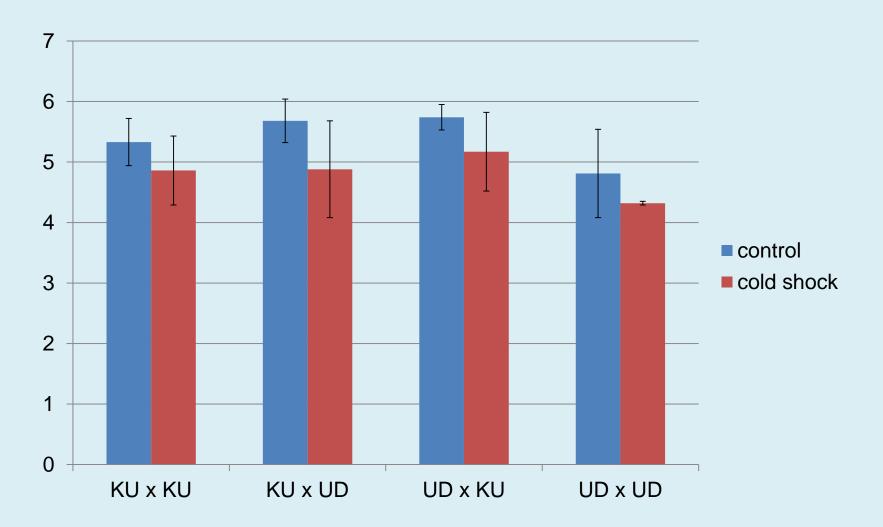

 y_{ijk} = trait, µ=constant, S_i=sire strain, D_j=dam strain, T_k=treatments (control or cold-shocked), SxD = interaction between sire and dam, SxT = interaction between sire and treatments, DxT = interaction between dam and treatments, SxDxT= interaction between sire, dam and treatments, e = error

Survival rates are included in the model for the analyses of the traits that may be affected by them.


RESULTS

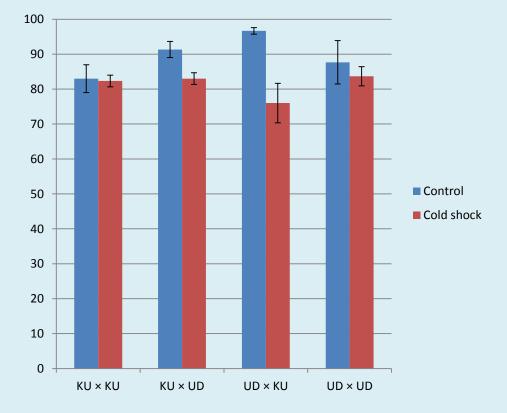
Hatching rate

Success rate


2n = 54 3n = 81

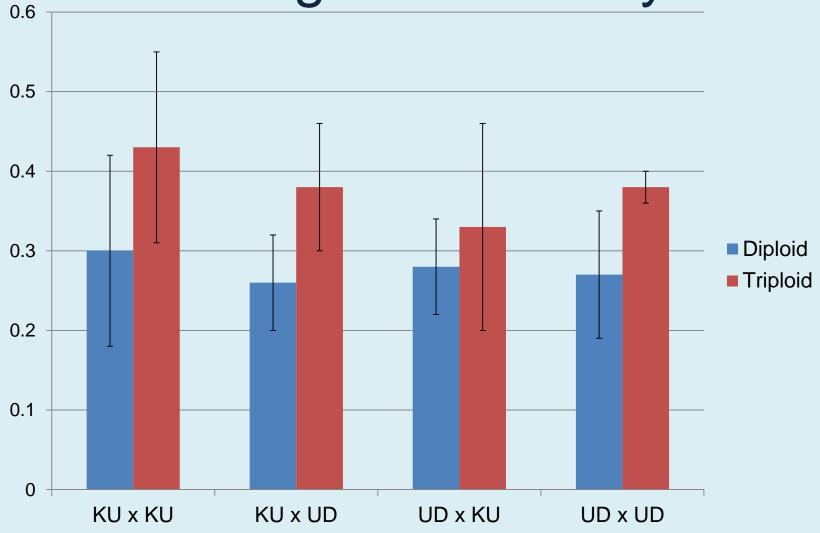
Results: 30-60 D

Factors/traits	BL	BW	AGR	SGR
Sire	ns	ns	ns	ns
Dam	ns	ns	ns	ns
Treatment	\checkmark	\checkmark	\checkmark	\checkmark
SirexDam	ns	ns	ns	ns
SirexTreatment	ns	ns	ns	ns
DamxTreatment	ns	ns	ns	ns
SirexDamx Treatment	ns	NS	ns	ns


SGR (30-60 D)

Growth Trial 61-240 D: survival

Factors/traits SUR


Sire	ns
Dam	ns
Treatment	\checkmark
SirexDam	ns
SirexShock	ns
DamxShock	ns
SirexDamx Treatment	\checkmark

Effects of Strains on Triploid: 90-240 D

Traits/ Factors	S	D	т	DxS	SxT	DxT	SxDxT
BL _{90D}	ns	ns	ns	ns	*	ns	ns
BL _{180D}	ns	ns	ns	ns	ns	ns	*
BW _{90D}	ns	ns	ns	ns	*	ns	ns
BW _{120D}	ns	ns	ns	ns	*	ns	ns
BW _{180D}	ns	ns	ns	ns	ns	ns	*
AGR _{61-90D}	ns	ns	ns	ns	*	ns	ns
AGR _{121-180D}	ns	ns	ns	ns	ns	ns	*
SGR _{61-90D}	ns	ns	ns	ns	*	ns	ns
SGR _{91-120D}	ns	ns	ns	ns	*	ns	ns
SGR _{180-240D}	ns	ns	*	ns	ns	ns	ns

SGR during 180-240 days old

Conclusion

- Neither sire nor dam had significant effects on growth of triploids.
- Only treatments had significant effects on BL, BW, AGR, SGR during 61-90 days old (Triploids<Diploids).
- Treatments had significant effect on survival rate at 240 days old (Triploids<Diploids) and SGR during 180-240 days old (Triploids>Diploids).

On-going work

- The preliminary results showed no differences in IGF-I expression between diploids and triploids. Therefore, transcriptomes are analysed in collaboration with Dr.Robert Devin, Center for aquaculture and environmental Research, Fisheries and Ocean, Canada.
- In collaboration with Dr.Sirawut Klinbugna, BIOTEC Thailand, full length of the Maturation Promoting Factor genes: cyclin B1 and cell division cycle 2 (Cdc2) of C. macrocephalus were characterized.
- Expression patterns of these genes are studied in diploid and triploids. Our preliminary results showed that expressions of *cyclin B1* and *Cdc2* were completely suppressed in gonad of *C. macrocephalus*.

Ackownledgements

- Royal Golden Jubilee, Thailand Research Fund
- Kasetsart University Research and Development Institute, Kasetsart University
- Dr.Robert Devlin, Fisheries and Ocean, Canada
- Dr.Sirawut Klinbunga, National Science and Technology Development Agency, Thailand
- Anyaluk Wachirachaikarn, Graduate School, KU