

Response to selection for harvest weight in a family based selection program of Githead seabream (Sparus aurata)

I. Thorland¹, L. Kottaras², T. Refstie¹, A. Dimitroglou², L. Papaharisis² and M. Rye¹

¹Akvaforsk Genetics Center AS, Sunndalsøra, Norway ²Nireus Aquaculture SA, Koropi, Greece

Nireus' family based breeding program for Gilthead seabream

- Broodstock collected from commercial stocks and wild origin
- 2002: First batch of full- and maternal half-sib families of sea bream made by artificial stripping.
- Nested mating design, 1 female mated to ~2 (range 1-13) males.
- 40-90 families have been produced annually in individual batches during 13 years.
- Seabream:
 - Hermaphrodite
 - Males/females mature at different age
 - Batch spawner

Genetic ties between batches:

- Repeated use of some broodstock
- Overlapping generations
- → Genetic trend analysis of total population → Selection according to comparable EBVs from all batches

Location:

- Full-sib families incubated and reared separately to approx. 10-15 grams average body weight.
- Tagged individually, pooled, and transferred to cages at commercial farms
- Recorded individually at market (harvest) size

Family based breeding program

Nucleus

4 years generation interval

Т

Sea bre	am													
	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
F0	Batch01	Batch02												
'F1⁄2'			Batch03	Batch04										
F1					Batch05									
F1.3						Batch06								
F1.6							Batch07							
F1.8								Batch08						
F2									Batch09					
F2.3										Batch10				
F2.6											Batch11			
F2.8												Batch12		
F3.2														Batch1
am/	5	0					\rightarrow		92					90
tch		•							F 0					

Commercial broodstock mass selected for growth have been introduced also in recent batches

Traits/ Selection goals

- Body weight (Growth corr to FCR)
 at harvest size ~400a
 - at harvest size ~400g
 - juveniles when tagging, g
- Exterior, score 1-4
- Deformities: jaw malformations, score 0/1
 - spinal malformations
 - others
- Cage survival
- Disease resistance
- Shape
- Carcass quality

Material

trait	N batch	N fish	N fam	N sire	N dams
Harvest weight	12	71756	713	637	364
Exterior	12	67499	713	637	364
Jaw deformity _{detailed ex.}	7	57253	493	452	259
Cage survival _{subopt env.}	3	8766	248	218	132

Data individuals:

Exterior: mean 2.1, sd 0.8

5

Family data:

trait	N fam	mean	sd	min	max
Harvest weight, g	713	399	102	152	682
Exterior, score 1-4	713	2.1	0.5	1.0	3.5
Jaw deformity _{detailed ex.,} %	493	23.4	16.2	0.0	81.4
Cage survival _{subopt env.} , %	248	67.0	20.7	0.0	100.0

Statistical analysis Genetic trend analysis batch01 – batch12

harvest_wt*_{ilm}= subclass1_i + β(age_m | subclass1_i) + tank_l + animal_m + e_{ilm} Subclass1= combination of batch, cage and transfer class * Adjusted for heterogenity of variance

External_col_{jlm}= subclass2_j + tank_l + animal_m + e_{jlm} Subclass2= combination of batch, cage and deformity status

 $Survival_{klm} = subclass3_k + tank_l + animal_m + e_{klm}$

 $Jaw_{klm} = subclass_k + tank_l + animal_m + e_{klm}$

Subclass3= combination of batch and cage

Genetic parameters

Trait	h²	C ²
Body weight at harvest*	0.37 ± 0.03	0.06 ± 0.01
Exterior	0.15 ± 0.02	0.03 ± 0.00
Jaw deformity	0.16 ± 0.02	0.03 ± 0.01
Cage survival	0.13 ± 0.03	0.01 ± 0.01

Selection is done according to a combined index with main focus on improved growth.

Genetic trend harvest weight (g)

Genetic trend expressed as mean EBV + average solution for fixed effects

Response to selection

Response in % having average solutions of fixed effects as reference

AKVAFORSK

Genetic trend robustness traits 100 90 80 70 60 Unselected mean: 65% survival 50 40 Survival in sub.opt. Env. 30 Unselected mean: 27% jaw 20 deformity 10 Jaw deformity (detailed) 0 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Production year

Monitoring and control to avoid undesirable changes

Only very small responses to selection has been achieved for exterior and cage survival

Genetic trend expressed as mean EBV + average solution for fixed effects

Genetic trend in actual units (%)

Accumulated inbreeding

Conclusion and status

- Results demonstrates totally 35% improvement in growth (harvest weight) in generation F(2.8) → average selection response of 12.5% / generation.
- Accumulated inbreeding are kept on a low level, below 3% in present population.
- Low heritability and selection response is calculated for external appareance.
- Additive genetic variation also shown for robustness traits (against developing jaw deformities, survival in sub-optimal environment). These traits are under selection control to avoid possible undesired responses.
- Selection program for Gilthead seabream is well established in Greece. Further responses to selection is expected in comming years. Expected the selection goals to be broadened (disease resistance, general robustness)