THE EFFECT OF PARENTAL RELATEDNESS ON THE FITNESS IN NEXT GENERATION OF THE GUPPY *Poecilia reticulata*

Muhammad S. ISMAIL^{1, 2}, Toyoko NAKAJIMA¹, Masamichi NAKAJIMA¹ 1 : Graduate School of Agricultural Science, Tohoku University, Sendai, Japan 2 : Aquaculture Department, Universiti Putra Malaysia, Selangor 43360, Malaysia

The Prediction of the Effect of Inbreeding and Evasion of Depression

- For the maintenance of genetic variability, large number of parental fish are required
- However, there is an limit of number of individual maintained as parental fish
- If we can predict the effect of inbreeding from heterozygosity and/or relatedness in the parental generation, the inbreeding depression on the next generation could be evaded
- Can inbreeding depression predict from parental heterozygosity?
- Can inbreeding depression predict from parental relatedness?

Maintained Condition Water Temperature : 23 ± 2°C Light-Dark condition : 14L、10L Density : 200 ~ 300 individuals in 60L Aquarium Feeding of Diet : Twice a Day

AY Strain: Collected from the stream from Ayutthaya, Thailand at Dec. 2012

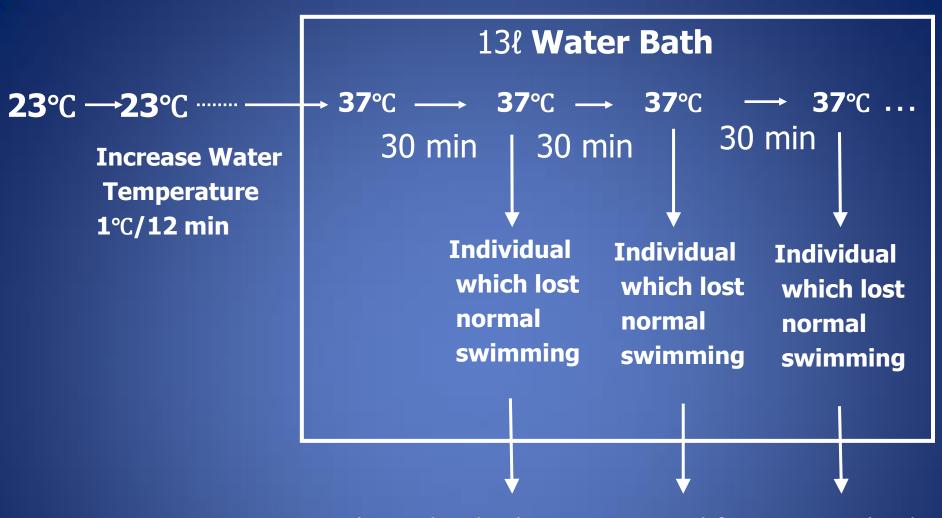
Na-1 Strain : Collected from the stream Okinawa, Japan at Jul. 1999

Strains Used for This Study

Randomly selected 5 Pairs From Each Strain P Generation

Full-Sib Mating of Obtained Offspring

Inbred F₀ Generation 180 days after Birth Body size, Survival rate, Genetic characteristics, Thermal Tolerance

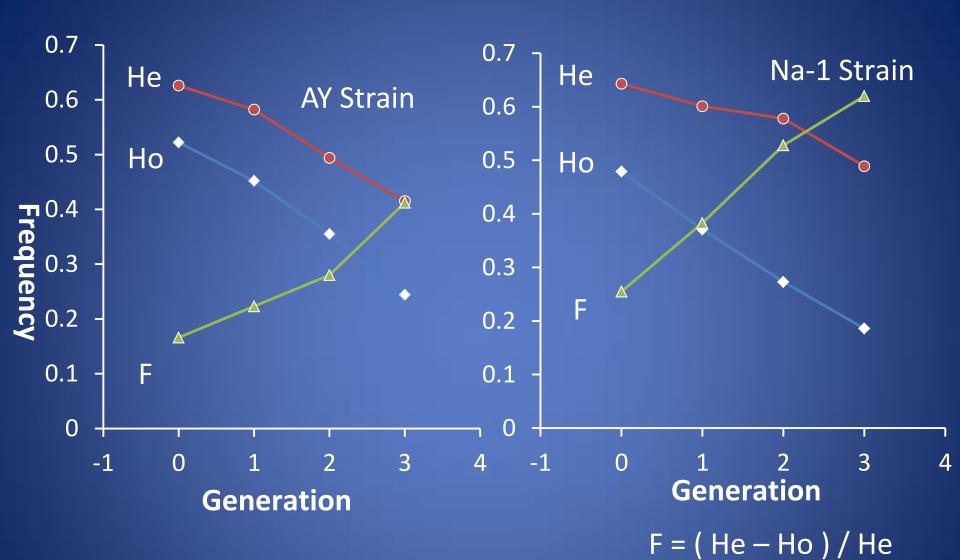

Full-Sib Mating of Obtained Offspring Inbred F₁ Generation 180 days after Birth Body size, Survival rate, Genetic characteristics, Thermal Tolerance

Full-Sib Mating of Obtained Offspring

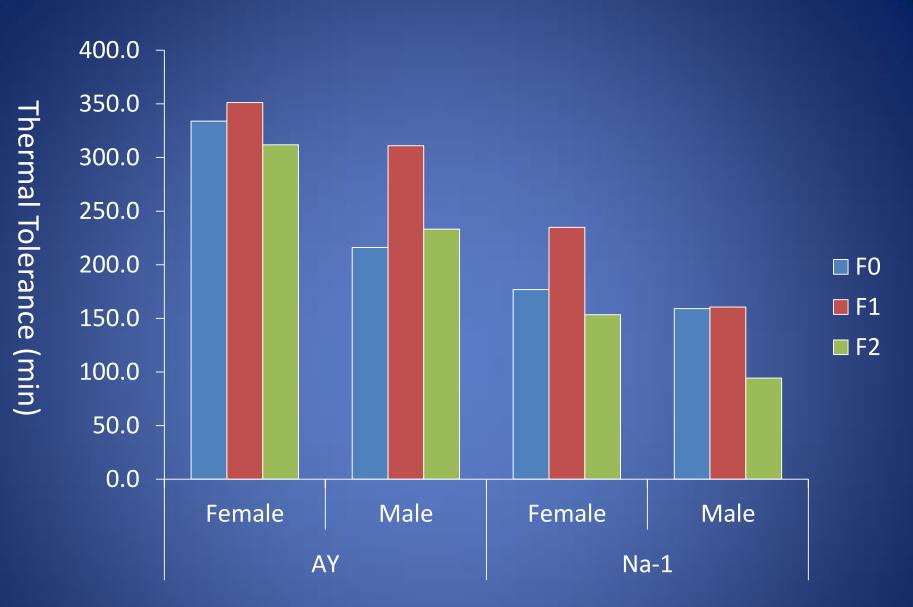
Inbred F₂ Generation 180 days after Birth Body size, Survival rate, Genetic characteristics, Thermal Tolerance

Experimental procedure

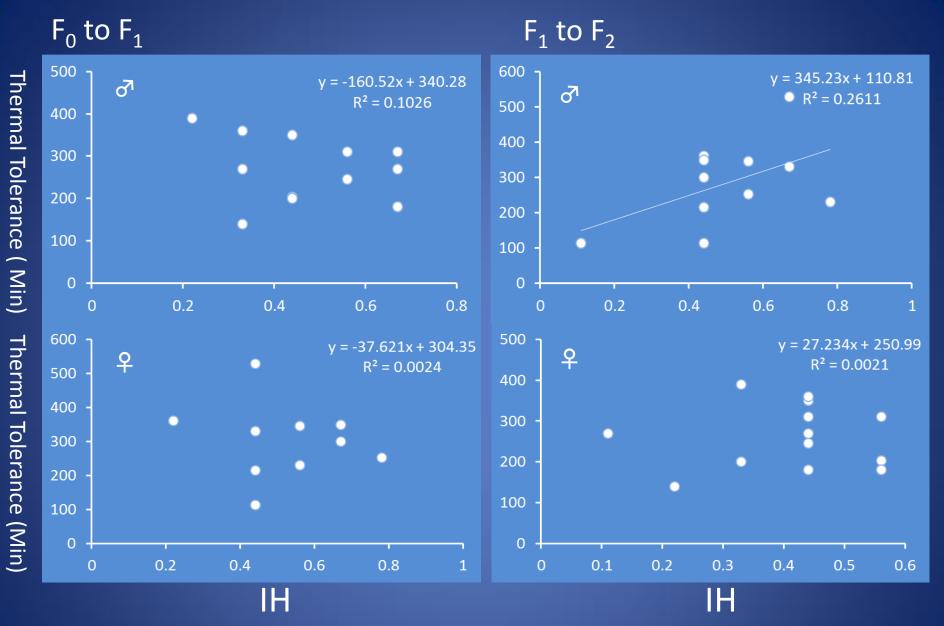
Genetic Markers Microsatellite DNA Markers: ATCC2, AC3, AGAT11, Pret-46, Pret-49, Pret-69, Pret-71, Pret-72, Pret-80 **Evaluation of Genetic Variability :** Individual Heterozygosity, Standardized Heterozygosity, Mean Family Internal Relatedness, Parental Relatedness **Evaluation of Fitness : Thermal Tolerance (TT) Statistical Analysis : ANOVA, Multiple Regression** Analysis

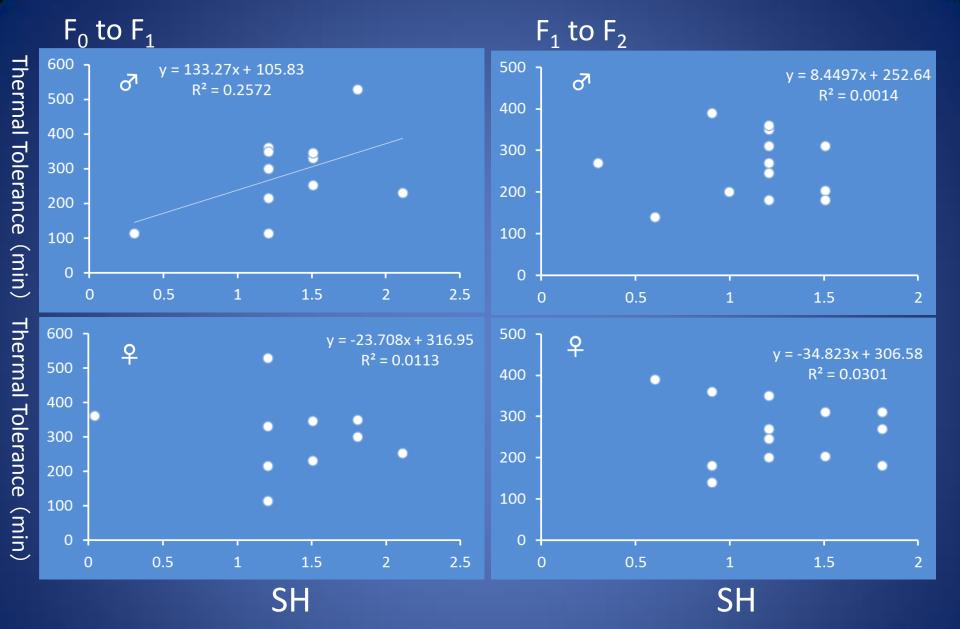


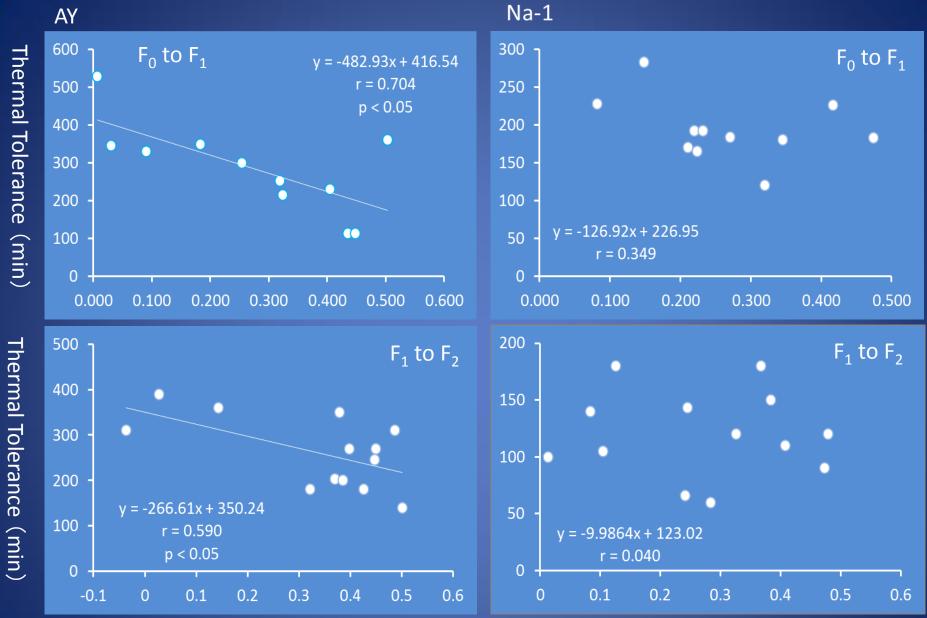
The individuals are removed from water bath and measure the body size


Evaluation of Thermal Tolerance

Survival Rate at 180 Days Old in each Generation


	AY			NA-1		
Gener ation	No. of Family	No. of Individual	Survival rate \pm SD	No. of Family	No. of Individual	Survival rate±SD
Р	5	10		5	10	
F_0	26	112	0.89 ± 0.23^{a}	59	238	0.92 ± 0.15^{a}
F_1	62	245	0.80 ± 0.29^{b}	56	230	0.79 ± 0.23^{b}
F_2	29	148	0.80 ± 0.26^{b}	48	181	0.75±0.22 ^c
F_3	35	112	$0.75 \pm 0.30^{\circ}$	58	243	$0.74 \pm 0.29^{\circ}$


Change of Genetic Characteristics According to Inbreeding Generation


Change of Thermal Tolerance According to the Inbreeding Generation

Correlation Between Parental Individual Heterozygosity and Thermal Tolerance in Their Offspring (AY strain)

Correlation between Parental Standardized Heterozygosity and Their Thermal Tolerance (AY Strain)

Parental Relatedness Parental Relatedness Correlation between Parental Relatedness and Thermal Tolerance in Their Offspring

Multiple Regression Analysis

Response Valuable : Thermal Tolerance

Explanatory Valuable : Generation, Strain, Sex, Individual Heterozygosity, Standardized Heterozygosity, Parental Relatedness, Mean Family Internal Relatedness, **Parental Thermal Tolerance**

Results of Multiple Regression Analysis

	Dortial		Standardized		
	Partial		Partial		
	regression	Standard	Regression		
Valuable	coefficient	Error	Coefficient	P value	
Generation	-52.091	18.438	-0.178	0.0051	**
Strain	127.146	16.375	0.443	0.0000	**
Sex	69.231	13.953	0.240	0.0000	**
IH Male	-261.618	360.662	-0.267	0.4689	
IH Female	-303.891	127.622	-0.407	0.0180	*
SH Male	152.421	134.014	0.407	0.2565	
SH Female	91.055	43.658	0.310	0.0381	*
Parental					
Relatedness	-227.163	48.301	-0.256	0.0000	**
MF IR	23.943	98.964	0.034	0.8090	
Parent Male TT -0.144		0.089	-0.095	0.1048	
Parent Female TT 0.080		0.061	0.092	0.1933	
Constant	228.620	93.193		0.0149	*
	** 0 000		$D^{2} = D^{2} = 0.420$	0.000	

** : P < 0.01 * : P < 0.05 $R^2 = 0.438$ p = 0.000

Results of Multiple Regression Analysis

		Standardized		
Par	tial	Partial		
regre	sion Standard	Regression		
aluable coeffi	cient Error	Coefficient	P value	
tion -52.	18.438	-0.178	0.0051	**
127.	146 16.375	0.443	0.0000	**
69.2	31 13.953	0.240	0.0000	**
al				
Iness -227	48.301	-0.256	0.0000	**
aluable coeffi ition -52. 127. 69.2	cientError09118.43814616.375.3113.953	Coefficient -0.178 0.443 0.240	0.0051 0.0000 0.0000	:

Generation	\rightarrow	Decrease of fitness according to generation
Strain	\rightarrow	AY is stronger than Na-1
Sex	\rightarrow	Female is stronger than male

Parental Relatedness → Parental genetic similarity influence to the fitness of next generation

Conclusion

• Parental relatedness and thermal tolerance in their offspring indicated negative regression.

 Negative regression indicates that the high similarity in parents leads low fitness in next generation.

 It was suggested that the inbreeding depression in the offspring generation could be predicted from the parental relatedness.