

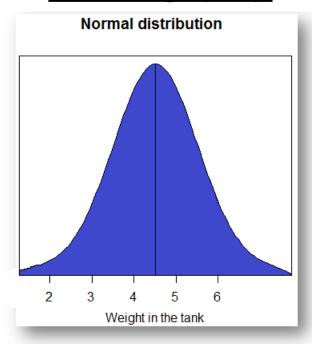
A quantitative genetic study of carcass quality traits in Atlantic salmon recorded both at a fixed age and fixed body weight.

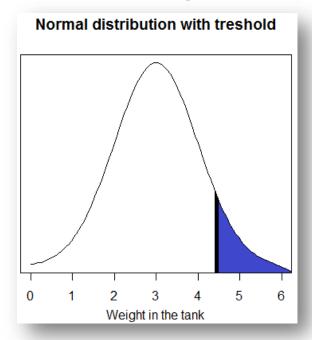
Ólafur Hjörtur Kristjánsson
Supervised by:
Bjarne Gjerde Nofima, Ås/Prof II IHA-NMBU.
Marie Lillehammer, Nofima Ås.
Jónas Jónasson, Stofnfiskur.

Important breeding objective traits

- -Growth
 - Reduce number of days to target weight.
- -Fat
 - Keep stable or reduce.
- -Pigment
 - Increase colour level in the fillet.

Genetic and phenotypic correlations recorded at same age


	Fat	Colour	Weight
Fat		0.03	0.48 to 0.63
Colour	-0.39		0.2
Weight	0.42 to 0.82	-0.21 to 0.31	


Objective

 Obtain estimates of genetic parameters for growth, filet fat and filet colour when measured both at:

Same age(SA)

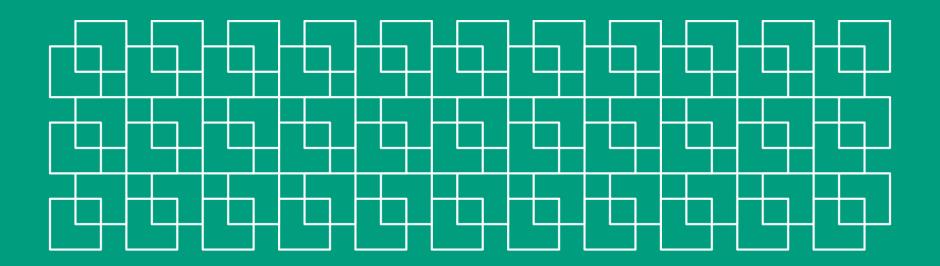
Same weight(SW)

Material

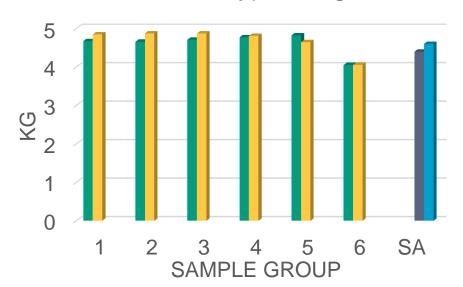
- Two year classes.
- 206 families, offspring of 206 females and 103 males
 - 10-15 individuals per family in SA group
 - 13-15 individuals per family in SW group.

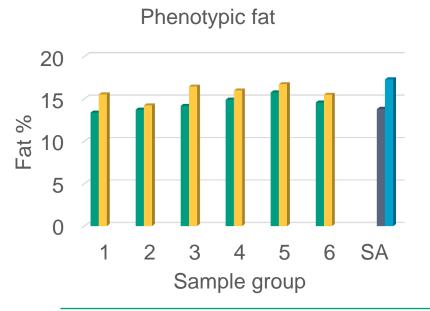
Methods

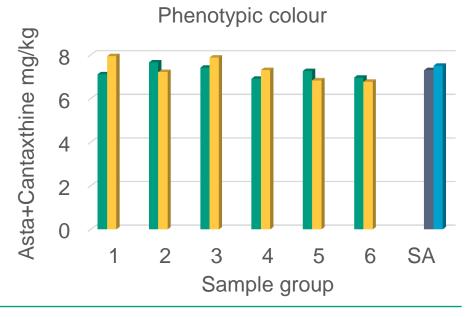
- SA group
 - -Growth, fat and colour measured at average weight of 4.7 kg, in total 2437 measures.
- SW group
 - Growth measured at the start.
 - -Growth measured on individuals around and above the target weight 4.4 kg ~ monthly.
 - -Fat and colour measured at slaughter.
 - –7561 growth measures, 2693 fat and colour measures.


Multivariate censored animal model in DMU

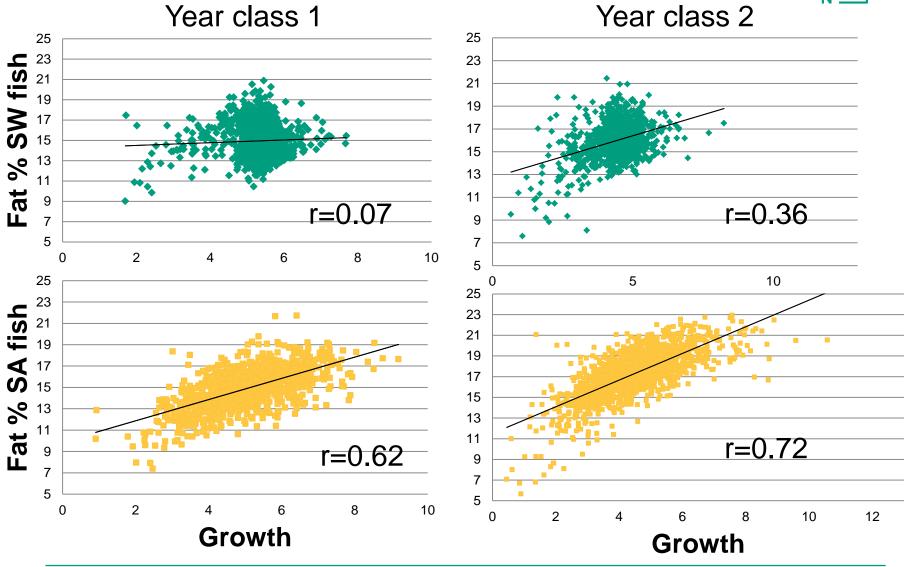
- Censoring data.
 - –Start growth ~ when average weight was 2.7 kg.
 - -Growth on individuals who reach threshold 4.4 kg.
 - Imputes growth values for remaining fish in tank using Gibbs sampler.
 - Total 13102 growth values used.
- The animal model for the 6 traits, growth, fat and colour SA and SW.
 - $y = X\beta + Zu + Mr + e$
 - -Fixed effects: sex, year class, slaughter date
- Estimated using MCMC with 2.400.000 rounds.


Results




Phenotypic weight

- Yc 1 SW
- Yc 2 SW
- ■Yc1SA
- Yc 2 SA



Phenotypic correlations

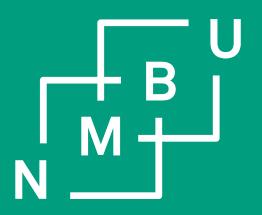
Heritabilities

	h ² SA	h ² SW
Fat	0.25±0.08	0.17±0.04
Colour	0.10±0.04	0.10±0.004
Growth	0.36±0.09	0.38±0.10

Genetic correlations between the same trait in SA and SW

	Genetic correlation	
Fat	0.59±0.08	
Colour	0.44±0.26	
Growth	0.92±0.04	

Genetic correlations between traits within SA and SW


	SA	SW
Fat and colour	-0.34±0.25	-0.26±0.26
Fat and growth	0.63±0.13	-0.21±0.23
Growth and colour	-0.36±0.24	0.25±0.32

Conclusions

- Magnitude of genetic correlations of growth with fat and colour depend on when the traits are measured.
- When measured at same weight instead of at same age genetic correlations change from being unfavourable to favourable.
- Possible to improve growth while at the same time reduce fat and increase colour as increased growth is utilized to perform earlier slaughter.

Thank you!

Norwegian University of Life Sciences

