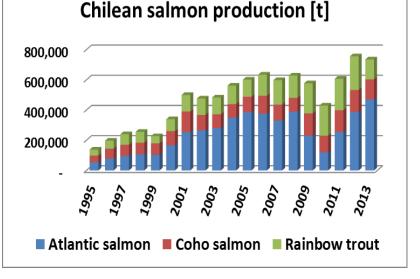
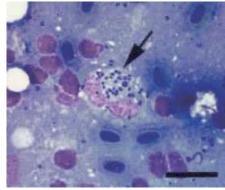


AQUAINNOVO


Negative genetic correlation between resistance against *Piscirickettsia salmonis* and harvest weight in coho salmon (*Oncorhynchus kisutch*)

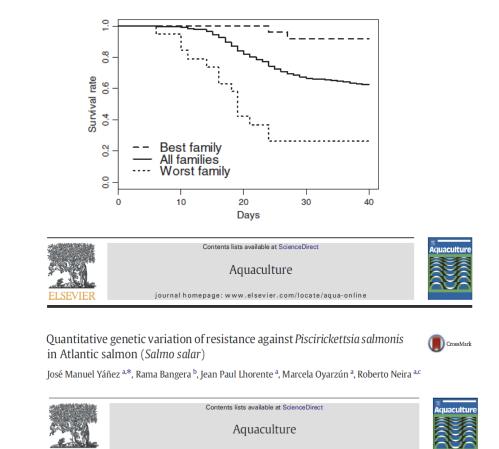
Yáñez JM^{1,*}, Barría A¹, Dufflocq P¹, Oyarzún M², Neira R³, Newman S⁴, Lhorente JP²


¹ Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
 ² Aquainnovo, Puerto Montt, Chile
 ³ Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
 ⁴ Genus plc, USA

Introduction

- Chile is one of the main producers of salmonids in the world: Atlantic salmon, rainbow trout and coho salmon.
- Leading coho salmon (Oncorhynchus kisutch) production: about 90% of global production
- One of the most economically important diseases affecting salmon production in Chile is *Piscirickettsia salmonis*
- Intracellular bacteria that causes the Salmon Rickettsial Syndrome (SRS) which generates high mortalities
- Genetic improvement of disease resistance represents an alternative to face pathogens and increase the sanitary status in aquaculture

Piscirickettsia salmonis



Fryer and Hedrick (2003)

Piscirickettsia salmonis resistance in Atlantic salmon

- We used different trait definitions: binary, day of death, test-day survival
- And several statistical models: linear, threshold, survival score, Cox and Weibull proportional hazards frailty models
- The estimated heritabilities for the different models ranged from 0.11 to 0.41
- The estimated the genetic correlation between *P. salmonis* resistance and body weight was negative but not significant (-0.19 ± 0.12)

Phenotypic variation of **SRS** resistance across 118 FS families

Genetic co-variation between resistance against both *Caligus rogercresseyi* and *Piscirickettsia salmonis*, and body weight in Atlantic salmon (*Salmo salar*)

José M. Yáñez^{a,b,*}, Jean P. Lhorente^b, Liane N. Bassini^{b,c}, Marcela Oyarzún^b, Roberto Neira^{b,c}, Scott Newman^d

journal homepage: www.elsevier.com/locate/aqua-online

Piscirickettsia salmonis resistance in salmonids

The International Symposium on Genetics in Aquaculture XII 21st-27th June 2015 in Santiago de Compostela, Spain

SUSCEPTIBILITY AND ENDURANCE ARE SAME GENETIC TRAITS FOR RESISTANCE AGAINST Piscirickettsia salmonis IN ATLANTIC SALMON (Salmo salar) R. Bangera¹²/J. P. Lhorente¹/M. Oyarzun¹/J.M. Yañez¹³

GENOME WIDE ASSOCIATION ANALYSIS FOR RESISTANCE TO Piscirickettsia salmonis IN ATLANTIC SALMON (Salmo Salar L.)

Correa K.^{1,2} / Lhorente J.P.² / López M.E.^{2,3} / Figueroa, R.² / Bassini L.^{2,3} / Di Genova A.⁴ / Maass A.⁴ / Davidson W.⁵ / Yáñez, J.M.^{1,2}

Rama Bangera

Katharina Correa

GENETIC PARAMETERS FOR RESISTANCE TO Caligus rogercresseyi, Piscirickettsia salmonis AND BODY WEIGHT IN RAINBOW TROUT (Oncorhynchus mykiss).

Bassini N.I.^{1,2} / Neira R.² / Yáñez J.M.^{1,3} / Newman S.⁴ / Oyarzún M.¹ / Erranz F.¹ / Figueroa R.¹ / Lhorente J.P.¹.

Liane Bassini

Objective

To determine levels of genetic co-variation between resistance against *Piscirickettsia salmonis* and harvest weight in coho salmon (*Oncorhynchus kisutch*)

Materials and methods

- Coho salmon breeding population established in 1997 (Puerto Montt, Chile)
- Harvest weight (HW) was recorded in 10,373 fish across 7 generations

CORRELATED RESPONSE IN COLOR FLESH AFTER SIX GENERATION OF SELECTION FOR HARVEST WEIGHT IN COHO SALMON (Oncorhynchus kisutch)

Lhorente J.P¹ / Newman S² / Neira R³ / Filp M¹ / Figueroa R¹ / Yáñez J.M¹⁴

Inbreeding and effective population size in a coho salmon (*Oncorhynchus kisutch*) breeding nucleus in $Chile^{\frac{1}{2C}}$

José M. Yáñez ^{a,*}, Liane N. Bassini ^a, Michael Filp ^a, Jean P. Lhorente ^a, Raúl W. Ponzoni ^b, Roberto Neira ^{a,c}

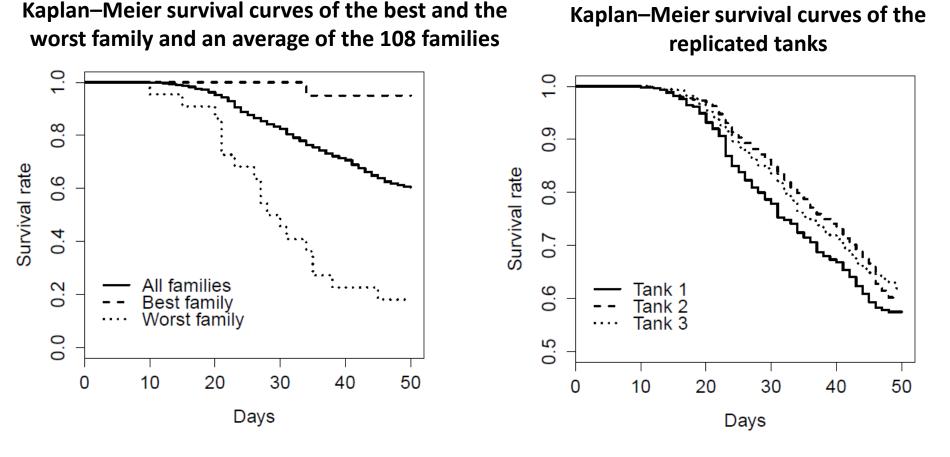
<u>Challenge Test</u>

- 2,606 siblings from 108 maternal FS families (60 paternal HS), from the 2012 spawning year, were PIT-tagged and challenged against *P. salmonis* at Aquainnovo's Research Station (Lenca River, Chile).
- Pathogenic strain of *P. salmonis* isolated in November 2012
- We used a dose of 0.2 ml of the LD⁵⁰ inoculum (IP injection)
- Fish were divided and maintained in three different tanks with salt water (32 ppt) during the test period.

Materials and methods

We used a bi-variate linear animal model to analyze **SRS** and **HW** using ASREML (Gilmour et al., 2009)

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} X_1 & 0 \\ 0 & X_2 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} + \begin{bmatrix} Z_1 & 0 \\ 0 & Z_2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + \begin{bmatrix} W_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ 0 \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \end{bmatrix}$$


y₁ and y₂ are vectors of observations for HW and SRS (day of death)
b₁ is the vector of fixed effects for HW (sex, cage, year and age at harvest)
b₂ is the vector of fixed effects for SRS (tank and weight at the end of the test)
u_i and e_i are vectors of random animal genetic and residual effects, respectively
c₁ is the vector of random common environment effect for HW
X_i and Z_i are the design matrices linking fixed and random effects to observations
W₁ is the design matrix for HW

Heritabilities and genetic correlations

$$\boldsymbol{h_i^2} = \frac{\sigma_{Gi}^2}{\sigma_{Gi}^2 + \sigma_{Ci}^2 + \sigma_{Ei}^2}$$

$$r_{HW,SRS} = \frac{\sigma_{aHW,aSRS}}{\sqrt{\sigma_{aHW}^2 \sigma_{aSRS}^2}}$$

Results

Significant phenotypic variation for resistance against *P. salmonis* with cumulative survival rates ranging from 18% to 95%

Results

Variance components, heritabilities, genetic and phenotypic correlations for harvest weight (**HW**) and *Piscirickettsia* salmonis resistance (**SRS**). (± = Standard Error)

		HW	SRS
	$\sigma_{\rm p}^2$	0.56 ± 0.01	79.3 ± 2.46
	σ_a^2	0.06 ± 0.002	11.1 ± 2.84
	σ_c^2	0.05 ± 0.007	-
	σ_e^2	0.44 ± 0.01	68.1 ± 2.56
	h²	0.12 ± 0.03	0.14 ± 0.03
r _g	HW	-	-0.50 ± 0.20
r _p	SRS	-0.06 ± 0.03	-

Conclusions

- Heritabilities for HW and SRS demonstrate the feasibility to improve these traits by selective breeding.
- The unfavorable genetic relationship between these traits must be accounted for when including them simultaneously into the breeding objective of coho salmon breeding programs (selecting for specific strains)

Future directions

Determining the genomic architecture of *P. salmonis* resistance in coho salmon and incorporating genomic information into the genetic evaluations to accelerate the genetic progress.

Thank you!

UNIVERSIDAD DE CHILE

Funded by:

ΛΩυλινονο

InnovaChile CORFO

jmayanez@uchile.cl

facebook.com/aquaculturegenetics