

• Universidad de Santiago de Compostela

- University of South Carolina
- University of the Sunshine Coast (Australia)

• University of Southern California

Oyster Chromosomes & Genome Size

10 linkage groups, ~600 cM map units, 559 Mbp

(1.2 crossovers per chromosome = 60 cM)

from Longwell, Stiles, & Smith 1967 Can. J. Genet. Cytol. 9:845-856

First- & Second-generation Maps

First-generation maps

- Used microsatellite DNA or Simple-Sequence Repeat markers
- >100 markers, but only 50-60 mapped in any one family
- Hubert & Hedgecock 2004 Hedge Genetics; Hubert, Cognard, submit Hedgecock 2009 Aquaculture f 00 35

Second-generation maps

- Coding SNPs added
- 1536 SNPs typed in 5 families by Illumina Golden Gate assay
- Hedgecock et al. 2011 JSR; Hedgecock et al. 2015, submitted

Hedgecock 2009 Aquacult26D22 f 00 35.ab1-F GTCTGAATCAG CCBN 105E01 f 00 35.ab1-F GTCTGAATCAG Cg CCBN 130E23 f 00 35.ab1-F GTCTGAATCAG Cg CCBN 116E24 f 00 51.ab1-F GTCTGAGTCAG CCBN 88006 f 00 51.ab1-F GTCTGAGTCAG CCBN 88006 f 00 51.ab1-F GTCTGAGTCAG CTCTGAGTCAG CTCTGAGTCAG

Lengths of 2nd Generation Maps

Markers grouped by pairwise G-tests of independent segregation

LG	No. of SNPs	12	45	20	2x10	51x35	Mean
1	154	43.3	56.7	65.4	96.4	57.4	63.8
2	18	37.1	41.0	28.7	42.4	51.7	40.2
3	119	53.1	48.8	45.4	100.0	51.6	59.8
4	120	57.0	73.4	95.0	71.8	60.8	71.6
5	60	49.3	49.2	55.4	53.1	61.9	53.8
6	152	47.0	68.4	42.8	65.4	58.0	56.3
7	153	54.0	44.8	30.0	94.8	67.0	58.1
8	82	198.4	33.4	78.1	68.8	48.1	85.3
9	29	38.8	39.0	42.1	35.1	57.8	42.6
10	198	50.8	52.9	52.2	62.0	65.7	56.7
Totals	1085	628.8	507.6	535.0	689.8	579.9	588.2
cM/marker		1.06	0.79	0.88	1.35	1.11	1.04

Markers by Mating Types

Mating _	G ₀	familie	S	F_2 fan	nilies
type	12	45	20	2 ×10	51×35
np×nn	219	232	223	122	61
ll×lm	221	246	240	146	67
hk×hk	134	134	132	236	396
ef×eg	13	10	8	15	8
ab×cd	15	28	13	2	0
All	602	650	616	521	532

Distribution of SNP mating types among parents reflects breeding history and an ascertainment bias

Distributions of SNPs over Families

		No. of SNPs	No. of maps	
		262	1	
76% of SNPs		285	2	
are mapped	_ 000	290	3	
in two or	= 823	180	4	
more families	J	68	5	
		1085	Sum	

Assignment of 1078 SNPs to 618 Genome Scaffolds

N	o. of SNPs	No. of linka	age groups t	o which sca	ffolds map	
р	er scaffold	1	2	3	4	Sum
	1	358	-	-	-	358
	2	106	37	0	0	143
	3	39	27	3	0	69
	4	11	13	2	0	26
	5	3	4	5	1	13
	6	0	3	2	0	5
	7	1	0	3	0	4
SNP	Sums, ≥2 Ps/scaffold	160	84	15	1	260

Of 260 genome scaffolds with two or more mapped SNPs, 100 (38%) have SNPs that map to different linkage groups

Mapping SNPs in Genome Scaffolds

Example SNPs	12	45	20	2x10	51x35
1004-G495596A	10	_	10	_	10
1004-T617736C	_	_	6	_	6
1009-A469251G	_	8	8	8	_
1009-C1006340T	10	10	10	_	10
1009-C1020482T	10	_	10	_	10
100-A378029G	6	6	6	-	_
100-C260475A	3	_	3	_	_

Statistics on Scaffolds & Adjacent SNPs That Map to 1 or > 1 Linkage Group

Implications for Genome Assembly

Short reads from Illumina sequencing

Hypothesis about Genome Assembly

Second-generation Map of LG 10

First-generation map, centromere located

0.0 -		128-C268824T 1671-T259579A
5.5	~/.	522-G275074A
651	Υ <i>Ι</i> ,	41652-C117156T
0.5		96 T1671429A
71	1///	625-G753028A
(. I \	/	41004 C1746T
8.3		41994-G17401
10.3	$\exists / /$	139214-100375A 1445-G137521A
14.8	Vſ	43302-A30304G
17.9	-1 //	163-1155099G
21.2	1///	36904-6172811
32.3	VIII	1385-A193329G
37.3	-1//r	1324-1502558C
39.5	V/h	Crgi015
40.4	-1/h	500-G116804A
41.3	VIII	43954-G79948A
41.4	I II	1492-T253526C
44.9		168-G770394A
46.5		819-A80065T
47.0	1/10	142-T1002148C
47.9	1	728-G136685A
48.3 -	100	Cg140
48.8 -	100	USC_39273-507-0
49.1		1788-C280066T 61-A460899T
50.3 -	- 18	1247-C138388T
	18	1539-A4396G 718-C66987G
50.4		C32084-A1728T
51.0 1		388-T57055C 492-T286888A
51.5 1	— I W,	43442-C165768T
53.6 -		Ca189
54 4 -	W,	1094-T828061C
57.4 -	W/	1004-G495596A
58.8	N//-	1583-490310G 1583-G750994
59.7		42794-G138778C
60.0	=	313-T500537G
60.2	_10	1841-C81200A
60.0	-10	1241-041703C 42046-C57775A
60.0	_100/_	027 T126224C
60.9		100 51504 1114 0
61.9	- WW/	1030_31324-1114-0
62.0	-W/	42050-G247091 57-G511000A
		131060-13203C
63.3	▝	1413-G516739A 410-C3726941
03.1		334-02345011
64.1	Ŧ	334-63/34040
64.7		334-G248488A
65.2 -/	\sim	35332-C19235A
65.7	~	1009-C1020482T

Regression map 65.7 cM

0.0 / 36904-G17281T 0.5 43562-A56564G 163-T155099G 1.9 39214-T66375A 1445-G137521A 8.9 -~ 522-G275074A 12.3 -41994-G1746T 16.3 -18.7 // 41652-C117156T 19.2 [/] - 86-T1671438A 41671-T259579A 128-C268824T 25.1 625-G753928A 32.0 -/ - 1385-A193329G 41.6 -42.1 -Crai015 819-A80065T 99.2 1324-T502558C 500-G116804A 101.1 101.6 43954-G79948A 102.5 1492-T253526C 106.5 168-G770394A 108.4 142-T1002148C 728-G136685A 109.3 109.8 Cg140 111.2 USC 39273-507-0 111.7 1788-C280066T 61-A460899T C32084-A1728T 1539-A4396G 113.1 718-C66987G - 1247-C138388T 113.6 -388-T57055C 492-T286888A 114.0 114.5 -43442-C165768T 1094-T828061C 119.2 -126.4 Ca189 1583-A90310G 1583-G75099A 136.9 1004-G495596A 313-T500537G 138.0 -241-A444703C 1841-C81200A 42794-G138778C 139.2 -42046-G57775A 31080-T3203C 139.7 42850-G24709T 837-T136334G 1009-C1020482T USC 51524-1114-140.6 35332-C19235A 413-G516739A 142.1 410-C372694T 142.5 334-C234561T 334-G248488A 142.8 57-G511668A 143.0 334-G373404C

Maximum likelihood map 143.0 cM

Plausibility of Marker Order on LG 10

Fit of markers to observed recombination

Framework Marker Order on LG 10

Improvement in Marker Orders

Causes of discrepancies between RG and ML maps 1. Markers segregating from one parent 2. Early viability selection, leading to distorted ratios 3. Genotyping errors (microsatellites >>> SNPs)

Acknowledgements

- Pat Gaffney, Ximing Guo, GIGASNP (USDA AFRI)
- Andrew Gracey, Grace Shin (USC); Manoj Samanta (Systemix)
- Guofan Zhang, Li Li, Haigang Qi (IOCAS); Jun Wang et al. (BGI)
- Dan Rokhsar (UC Berkeley, DOE JGI)
- Members of the Oyster Genome Consortium (Greg Warr, Kim Reece, Pierre Boudry)

United States Department of Agriculture

National Institute of Food and Agriculture