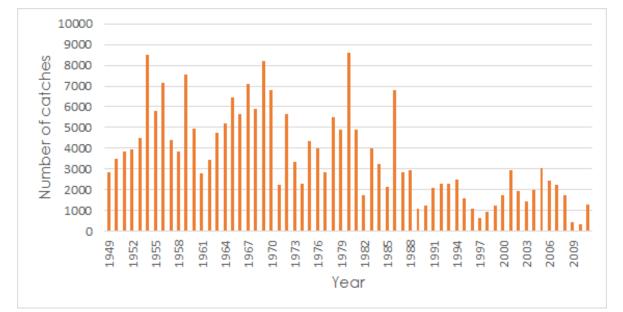

"A Genome-wide Association Study for Sex Determination in Atlantic Salmon"

Lara COVELO-SOTO, Paloma MORÁN, Mathew P. KENT, María SAURA


Atlantic salmon (Salmo salar)

Decline in salmon Iberian populations

Number of captures accumulated among the main Spanish rivers per year (1949 - 2011)

• Important decrease in number of catches (diminution of 85% approx.)

Causes

- Overfishing
- Pollution

Sex Determination (SD)

- Sex determination is important for conservation programs and aquaculture.
 - Sex associated genetic markers \rightarrow Early sex identification
 - Balanced sex ratio or mono-sex production (salmon Q)


Sex-determining master genes are the main genetic switches controlling the gonadal sex differentiation cascade leading to the development of ovaries or testes

• Fish species: high genetic variation for SD

Sex Determination: Salmonids

- Phenotypic sex determined by a genetic male heterogametic system.
- Atlantic salmon lacks morphologically different sexual chromosomes.
- Previous studies: identified sex chromosomes by genetic mapping and FISH (probes with sex-linked markers)

Sex Determining Loci in salmonids: previous studies

Original Article

Cytogenet Genome Res 112:152–159 (2006) DOI: 10.1159/000087528

Cytogenetic and Genome Research

Identification of the sex-determining locus of Atlantic salmon *(Salmo salar)* on chromosome 2

C.G. Artieri,ª L.A. Mitchell,ª S.H.S. Ng,ª S.E. Parisotto,ª R.G. Danzmann,^b B. Hoyheim,^c R.B. Phillips,^d M. Morasch,^d B.F. Koop,^e W.S. Davidson^a

Current Biology 22, 1423-1428, August 7, 2012 02012 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2012.05.045

An Immune-Related Gene Evolved into the Master Sex-Determining Gene in Rainbow Trout, *Oncorhynchus mykiss*

Heredity (2014) 113, 86–9 © 2014 Macmillan Publishers Limited All rights reserved 0018-067X/1 www.nature.com/hc OPEN

ORIGINAL ARTICLE Evidence for multiple sex-determining loci in Tasmanian Atlantic salmon (*Salmo salar*)

WD Eisbrenner¹, N Botwright², M Cook², EA Davidson¹, S Dominik², NG Elliott², J Henshall², SL Jones¹, PD Kube², KP Lubieniecki¹, S Peng¹ and WS Davidson¹

Artieri et al 2006

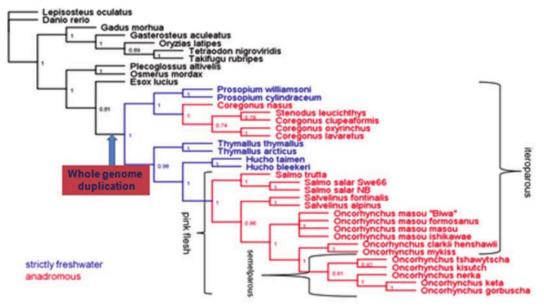
 European Atlantic salmon (Norway): SD locus on the long arm of chromosome 2 (Ssa02)

Yano et al 2012

- Sex master gene in Rainbow trout, sdY
- sdY linked to the SD locus in most salmonids: in SD locus of Atlantic salmon.

Eisbrenner et al. 2013

- Tasmanian Atlantic salmon (Canadian origins)
- Three SD loci on chromosomes: Ssa02, Ssa03 and Ssa06.
- All males have sdY gene within the 3 SD loci


Background

- Atlantic salmon genome is complex and highly repetitive
- Stemming regions from salmonspecific whole-genome duplication

Davidson 2013

Fig. 1. Phylogenetic relationships within the Salmonidae and other fish species based on the amino acid sequences of mitochondrially encoded proteins.

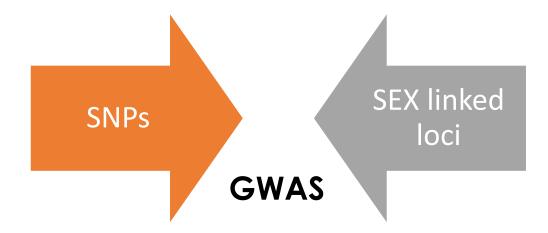
- Spain is the South distribution limit of the species in Europe
- Small populations. High genetic pressures.

Genotyping array: Atlantic salmon

96 samples / array 220K SNPs/sample

GWAS analysis

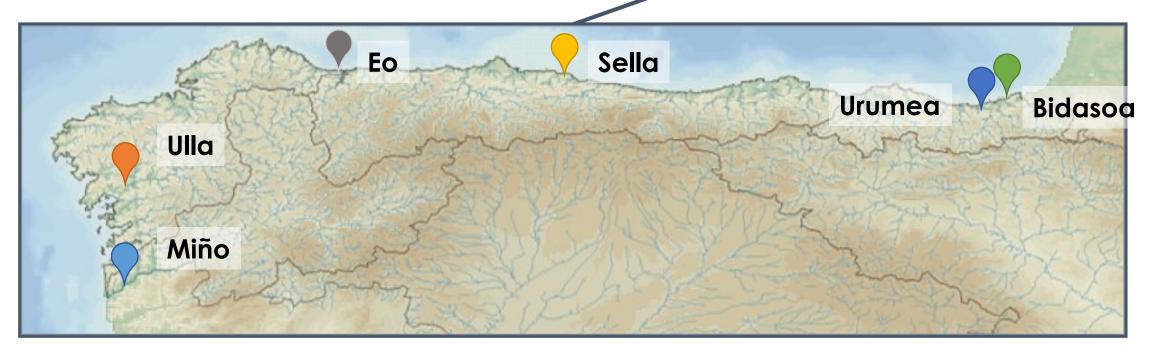
Genome Wide Association Studies


Evaluates the association between each genetic SNP marker with a phenotype in a pool of many individuals.

Objective

Investigate potential association between SNPs and sex in Atlantic salmon

Spanish population using genome-wide association approaches (GWAS)


SPAIN

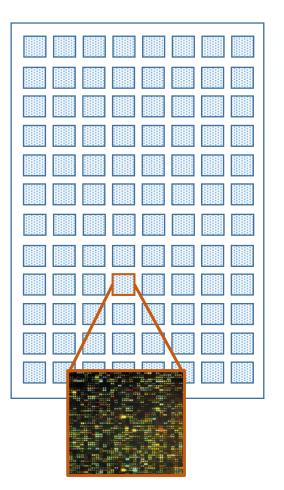
ALGERI

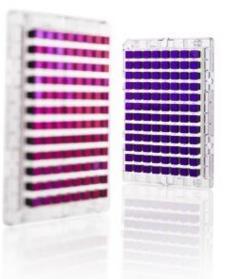
Genotyping Atlantic salmon (220K SNPs array)

Samples

- 16 individuals/river → 96 individuals in total
- 6 rivers

Samples QC


 DQC (dish quality control) measure of the interference between foreground and background signal distribution


DQC ≥ 0.82

Call rate

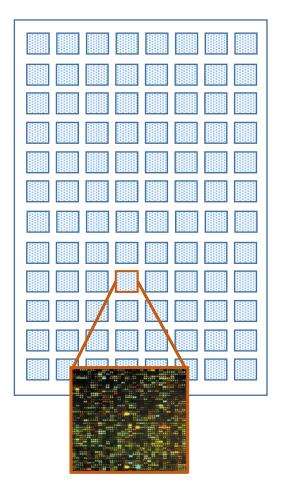
% of DNA samples whose genotype is successfully measured

Call rate ≥ 0.98

MAF

Minor allele frecuency

Excluding those SNP with a very low allele frequence

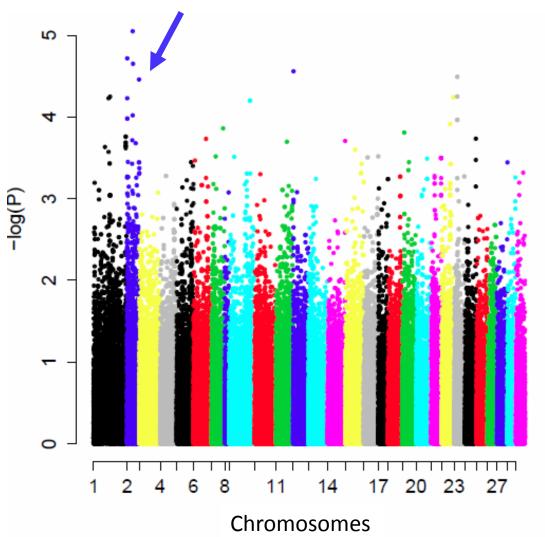

MAF < 0.05

HWE

Hardy-Weinberg Equilibrium

Deviation from HWE can indicate genotyping errors Small p-values indicate some HW disequilibrium

HWE < $1 \cdot 10^{-5}$



Number of SNPs after filtering: 161486

Results

Analysis results

Package GenABEL

Logistic regression approach (sex=binary trait)

- Interesting SNP p-values trend at chromosome 2
- Making corrections analysis each chromosome indepently: reveled 8 significant SNPs at chromosome 2
- SNP positions chromosome 2 (5 different regions):

 Spanish Atlantic salmon population seems to have SD locus located on the chromosome 2, as previously detected in other populations

Next step

- Determinate the exact location of the regions found:
 - Do they overlap previous described regions?
 - Do they contain the sdY gene?
- Improve statistical power:
 - Increasing the sample size

- Pruning by linkage disequilibrium: decrease the number of SNPs: lower threshold for multitest correction

Thank you!!!

Paloma Morán and María Saura

Matthew P. Kent

Pablo Caballero Jerónimo de la Hoz Pedro Leunda Iñaki Bañares

Universida_{de}Vigo

Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria

Sex Ratio: Experiment samples

River	Number of Females	Number of Males
Miño	10	6
Ulla	11	5
Eo	15	1
Sella	13	3
Bidasoa	13	3
Urumea	7	9
TOTAL	69 (72%)	27 (28%)