

COMPARATIVE ANALYSIS OF MICRORNAs TRANSCRIPTOME EXPRESSION IN CHITRALADA, RED STIRLING AND IN CROSSBRED NILE TILAPIA (*Oreochromis niloticus*) USING HIGH THROUGHPUT SEQUENCING

Herkenhoff M.E., Bovolenta L.A., Dias M.A.D., Hilsdorf A.W., Pinhal D.

✓ 12.951.766 Km² of coast

✓ 12% world freshwater

Fisheries and Aquaculture

✓ Brasil nowadays: 1.2 million ton/year

Ministry of Fisheries and Aquaculture

 ✓ 2008 – plan "Improving Fisheries and Aquaculture" – aim to increase by 40% total production

Fisheries production (marine and continental) 1950-2010

Aquaculture production (marine and continental) 1950-2010

Nile tilapia (Oreochromis niloticus)

- Top farmed freshwater fish
- -40% 133,000 tons/year
- Genome sequenced
- Genetically improved
- Breeds and lines were developed

Chitralada

Red Stirling

Introgressive crossbreeding

Heterotic crossbreed

Hilsdorf, 2013

- What are the molecular mechanisms underlying heterosis?
 - DNA SNPs; QTLs
 - RNA variable gene expression
 - Proteins

ncRNAs: microRNAs

Tilapia microRNAs

NATURE | ARTICLE OPEN

<

日本語要約

The genomic substrate for adaptive radiation in African cichlid fish

David Brawand, Catherine E. Wagner, Yang I. Li, Milan Malinsky, Irene Keller, Shaohua

Molecular Biology Reports August 2014, Volume 41, Issue 8, pp 4953-4963

Date: 22 Apr 2014

MicroRNA repertoire for functional genome research in tilapia identified by deep sequencing

Biao Yan, Zhen-Hua Wang, Chang-Dong Zhu, Jin-Tao Guo, Jin-Liang Zhao

Subject Areas Publish About

Identification and Characterization of MicroRNAs in Ovary and Testis of Nile Tilapia (*Oreochromis niloticus*) by Using Solexa Sequencing Technology

Jun Xiao 🔯, Huan Zhong 🔯, Yi Zhou, Fan Yu, Yun Gao, Yongju Luo, Zhanyang Tang, Zhongbao Guo, Enyan Guo, Xi Gan 🖬 Ming Zhang 🔄 Yaping Zhang

Published: January 23, 2014 • DOI: 10.1371/journal.pone.0086821

doi:10.2527/jas.2012-5142

Differential expression patterns of growthrelated microRNAs in the skeletal muscle of Nile tilapia (Oreochromis niloticus)¹

C. W. Huang*†, Y. H. Li*, S. Y. Hu‡, J. R. Chi*§#, G. H. Lin*, C. C. Lin*, H. Y. Gong†, J. Y. Chen $\|$, R. H. Chen¶, S. J. Chang¶, F. G. Liu¶ and J. L. Wu 2

Still need to be better addressed:

Total miRNA composition in Nile tilapia

miRNAs roles in growth

miRNA roles in the crossbreed heterosis phenotype (if any)

- Characterize the miRNA expression profile in Nile tilapia

- Compare miRNA signatures between crossbreed and parentals (lines)

Material and Methods

Read count numbers generated by global miRNA sequencing

2 dpf

3 dpf

4 dpf

5 dpf

10 dpf

F. Brain

Gonads

F. White

Muscle F. Red

Muscle

Eye

F.

Reads	Counts
Total	284.734.849
Sized between 15 and 26nt	116.816.138
100% genome similarity	90.596.359
Unique	5.519.754

7.0E+06 6.0E+06 5.0E+06 Raw count (reads) 4.0E+06 3.0E+06 2.0E+06 1.0E+06 0.0E+00 19 20 21 22 23 25 16 17 18 24 26 Length (nt)

Raw reads distribution in samples

- 271 pre-miRNAs could be traced to genomic locations representing 314 miRBase known mature miRNAs
- Mature miRNAs were:
 - 195 miRNAs-5p
 - 206 miRNAs-3p
- Grouped into 234 families

• Also several isoforms (isomiRs) were identified

List of the top 10 highly expressed miRNAs in O. niloticus.

Eyes		liver		heart		red muscle(female)		white muscle (female)	
mir-183	544000	mir-122	363000	mir-126	224000	mir-10	175000	mir-26	122000
mir-182	65900	let-7	60200	mir-100	163000	mir-100	114000	let-7	106000
let-7	57100	mir-100	58300	let-7	93300	mir-26	90800	mir-10	105000
mir-100	53400	mir-199	53000	mir-99	91400	let-7	88100	mir-1	105000
mir-96	49900	mir-26	32800	mir-26	87800	mir-143	36600	mir-206	60000
mir-181	33200	mir-126	30600	mir-27	41400	mir-126	31700	mir-100	57300
mir-184	24900	mir-192	30300	mir-499	38900	mir-27	27500	mir-125	54000
mir-99	19000	mir-181	19900	mir-1	26800	mir-30	27300	mir-133	47100
mir-124	12500	mir-30	19400	mir-30	20500	mir-181	25000	mir-21	28900
mir-146	8240,88	mir-146	17700	mir-21	20400	mir-99	21800	mir-199	23900
mir-26	5899,12	mir-99	10900	mir-125	19200	mir-21	19300	mir-22	20400

List of the top 10 highly expressed miRNAs in O. niloticus.

red muscle (male)		white muscle (male)		gonads		Testis		brain (female)	
mir-10	209000	mir-10	208000	mir-100	143000	mir-10	79900	mir-100	253000
mir-100	200000	mir-1	147000	let-7	107000	mir-100	66300	mir-125	150000
mir-26	102000	let-7	81900	mir-146	107000	mir-143	45700	let-7	149000
let-7	68900	mir-100	72700	mir-21	41800	mir-26	43600	mir-26	79500
mir-181	54200	mir-26	69200	mir-143	39100	mir-126	41300	mir-99	68700
mir-125	43900	mir-206	63400	mir-27	27400	let-7	30000	mir-126	37500
mir-99	37700	mir-133	45100	mir-10	26800	mir-30	23700	mir-9	33600
mir-143	36900	mir-21	39500	mir-126	22500	mir-146	21400	mir-124	26200
mir-30	28000	mir-99	18900	mir-99	12900	mir-7	19400	mir-10	24500
mir-126	23800	mir-199	15000	mir-22	5892,45	mir-21	17700	mir-128	20500
mir-27	22100	mir-126	14600	mir-7	5890,49	mir-22	14600	mir-27	14800

miRNAs distribution in Nile tilapia genome (linkage groups)

$-\downarrow$ Crossbreed (Red Stirling)

• 13 miRNAs

- \uparrow Crossbreed (Chitralada)
 - 4 miRNAs

Low expressed in Crossbreed in comparison to Red Stirling miRNA H5 H6 R5 R6 R5/H5 R6/H6 let-7e-3p 0,67 2,12 0,77 0,14 1,23 0,63 mir-16-3p -0,25 1,26 1.03 0.58 0.98 4,08 mir-24-5p 1,03 2,32 5,4 6,44 2,4 1,47 mir-122-5p 40,01 2356,2 609,95 2317,05 3,93 -0,02 mir-124-3p 0,51 1,88 13,67 0,16 0,57 2,86 mir-135a-5p 0,77 0,43 0,25 3,30 -1.65 2,92 mir-153-3p 0,51 4,15 2,29 8,48 2,16 1,03 mir-192-5p 17,44 1008,3 215,10 1171,56 3,62 0,21 mir-194-5p 1,54 23,74 7,86 44,61 2,35 0,91 mir-216b-3p 0,00 0,58 0,98 3,14 2,44 0 mir-219-5p 0.00 0.14 0.00 0.63 0 2,12 mir-301-5p 0,51 6,37 3,44 5,03 2,74 -0,34 mir-458-5p 0,51 6,66 3,93 5,66 2,94 -0,24

High expressed in Crossbreed in comparison to Chitralada

miRNA	H5	H6	C5	C6	C5/H5	C6/H6
mir-124-3p	0,51	1,88	0,32	0,26	-0,68	-2,86
mir-219-5p	9,23	24,03	1,44	24,92	-2,68	0,05
mir-301-3p	1,03	0,87	0,24	0,32	-2,1	-1,42
mir-458-5p	0,51	0,14	0,12	0,19	-2,1	0,43

- Among these miRNAs
 - let-7 has been previously enrolled in fish growth
 - mir-122 pigs

Results

let-7 (let-7a-3p) GH-2 (Barozai, 2012)

Gene 499 (2012) 163-168

Short communication

Identification and characterization of the microRNAs and their targets in Salmo salar

Muhammad Younas Khan Barozai*

Department of Botany, University of Baluchistan, Sariab Road, Quetta, Pakistan

- let-7
 - Myostatin (De Santis et al., 2008)

BMC Genomics

Research article

Open Access

Molecular characterization, tissue expression and sequence variability of the barramundi (Lates calcarifer) myostatin gene Christian De Santis, Brad S Evans, Carolyn Smith-Keune and Dean R Jerry*

Address: Aquaculture Genetics Research Program, School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, 4811, Australia

Email: Christian De Santis - christian.desantis@jcu.edu.au; Brad S Evans - brad.evans@jcu.edu.au; Carolyn Smith-Keune - carolyn.smith@jcu.edu.au; Dean R Jerry* - dean.jerry@jcu.edu.au

* Corresponding author

• miR-122

- Fat deposition - pigs (Chen et al., 2012)

Solexa Sequencing Identification of Conserved and Novel microRNAs in Backfat of Large White and Chinese Meishan Pigs

Chen Chen¹, Bing Deng¹, Mu Qiao¹, Rong Zheng¹, Jin Chai¹, Yi Ding¹, Jian Peng²*, Siwen Jiang¹*

1 Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China, 2 Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China

- Several novel miRNAs candidates were identified
- Prevalence of miRNA-3p in some tissues is indicative of arm-shifting
- Differentally expressed miRNAs in Crossbreed individuals may support their phenotype

Research group

Dr. Danillo Pinhal

Luiz A. Bovolenta

Dr. Alexandre Hilsdorf

Dr. Marco Dias

Marcus Frohme (Germany)

Simon Moxon (UK)

Acknowledgement

