## Female specific markers and attempts of all-female production in half-smooth tongue sole (*Cynoglossus semilaevis*)

Quanqi ZHANG Ocean University of China

ISGA XII, Spain, 2015.06.23

## Why sex control in fish

- 1. In many species, growth difference between sexes
- 2、Control unexpected reproduction and population size
- 3、Some species have different maturation age

# Sexual dimorphism in half-smooth tongue sole





Cynoglossus semilaevis,

(Pleuronectiformes, Cynoglossidae)

Important aquaculture flatfish showing significant fast growth and larger size in female than in male

## **Sex determination system**



ZW/ZZ



| <u>}</u> |                      | <b>₿</b> _ <b>(</b> | <b>8-9</b><br>4             | • <b>1</b> -1-<br>                           | . <b>1_9</b> .              | <b>Q A</b>            |
|----------|----------------------|---------------------|-----------------------------|----------------------------------------------|-----------------------------|-----------------------|
| <u>8</u> | 9 <b>-)</b> .        | <u>10</u>           | <b>8</b> - <u>A</u> -<br>11 | <u>                                     </u> | · <b>ʃſ</b> .<br><b>ſ</b> - | - <u>6</u> -0-<br>14  |
| -)       | · <b>)-</b> 8-<br>16 |                     | - <b>)−(</b> -<br>18        | <b>9-9</b> -<br>19                           | · <b>N8</b> -<br>20         |                       |
|          | K                    | aryo                | otyp                        | e of                                         | Fem                         | ale<br><sup>5µm</sup> |

## Ways for producing all female offspring



Q: How to Identify ZW Neo-male from normal ZZ male? How to identify WW super female from normal ZW female?

## **W** chromosome microdisection



- A total of 100 W chromosomes were dissected
- DOP PCR amplification of dissected W—DNA
- W specific library was constructed
- W specific markers were developed
- Molecular sexing method was developed

### With DOP-PCR amplified W--DNA as probe, reverse painting was conducted Z and W chromosomes were recognized.



Aquaculture 297, 78–84

## **Molecular Sexing**

From the W specific library, several female specific markers were identified.

By simple PCR, the genetic sexes can be easily distinguished



#### Aquaculture 388–391 (2013) 49–53

## We also constructed Fosmid library with the average insert size of 30Kb





FISH analysis showed that most F clones give one pair of signals



## Identification of W-recognizing Fosmid clone





When using rDNA containing clone as probe

- male cells showed 6 signals
- female cells showed 7 signals, with one large signal on W chromosome

# W specific markers ->screen of W specific fosmid clones -> FISH



Several W specific fosmid clones were identified--mapped only on W chromosome They can be used to distinguish WW from ZW

## **Possible origin of the W chromosome**

The existence of obvious sex chromosomes in Pleuronectiformid fish is rare. The formation of extremely large W chromosome in half-smooth tongue sole may be a relatively "recent" event

We guess: One rDNA carrying chromosome translocated to the Proto-sex chromosome



#### All female production attempt 1: gynogenesis



Chromosomes for 200 gyogens, all individuals were ZZ male, PCR assay did not find W markers in the offspring.

**Gynogenesis cannot obtain WW!** 

| ZZ | ŧ  | ZZ | €O |
|----|----|----|----|
| ZZ | \$ | ZZ | \$ |
| ZZ | \$ | ZZ | \$ |
| ZZ | \$ | ZZ | ð  |
| ZZ | \$ | ZZ | \$ |
| ZZ | \$ | ZZ | \$ |
| ZZ | \$ | ZZ | \$ |
| ZZ | \$ | ZZ | ŧ  |
| ZZ | \$ | ZZ | ŧ  |
| ZZ | \$ | ZZ | \$ |
| ZZ | \$ | ZZ | \$ |
| ZZ | \$ | ZZ | ð  |

All female production attempt 2: sex reversal

Among the sex reversed stock, more than 70% individuals were physiological males.

PCR assay identified 34% of the males were genetically ZW pseudo-male.

More than 800 ZW neo-males were screened



#### Most ZW males got mature and produced sperms

PCR detection can find the W specific marker from all sperms produced by ZW males.

This means:

W sperms were produced



#### All female production attempt 2: using ZW males



## Among the offspring of ZW male, about 60% individuals have W specific marker.

Chromosomes for <u>more than 200 individuals</u> revealed that all these were genetically ZW.

WW super female was not found

#### All female production attempt: using ZW male



#### **Growth of offspring from ZW X ZW cross**

|           | ZW X ZW     |      | Control ZW X | X ZZ |
|-----------|-------------|------|--------------|------|
|           | <b>우</b>    | 8    | 우 8          | 5    |
| Total No  | 67          | 58   | 33 4         | 5    |
| Sex ratio | <u>59.6</u> | 40.4 | 42.3 57      | . 4  |
| Max. BL   | 24.5        | 17.4 | 25.4 19      | . 3  |
| Min. BL   | 10.7        | 9.6  | 14.5 11      | . 8  |
| Av. BL    | 17.3        | 16.0 | 22.2 17      | . 6  |
| Max. BW   | 98.0        | 25.2 | 110.3 36     | . 6  |
| Min. BW   | 6.6         | 4.7  | 12.7 8.      | 9    |
| Av. BW    | 24.5        | 15.0 | 35.8 16      | . 5  |

The contribution of W sperms was not the same to that of W eggs

## Alternative methods?— polyploidy?

ZW 우 × ZZ 중 Normal cross

Suppression of the PB2 release in the fertilized eggs

ZWW ZZZ ZZW?

## In the induced group more than 80% were triploids



## **Chromosomes of triploids**



Chromosomes were observed in 30 individuals at average body length of 15cm

- ✓ ZZZ 16
- ✓ ZWW 14
- ✓ ZZW 0

#### Sex and growth performance of triploids

| Chromocomo    | Gonadal 우 |                        | Gonadal 8 |                        |  |
|---------------|-----------|------------------------|-----------|------------------------|--|
| (genetic sex) | No.       | Average<br>Body weight | No.       | Average<br>Body weight |  |
| ZZ            | 2         | 30.1                   | 14        | 29.9                   |  |
| ZW            | 12        | 35.2                   | 6         | 28.4                   |  |
| ZZZ           | 11        | 20.6                   | 4         | 28.3                   |  |
| ZWW           | 8         | 35.8                   | 6         | 17. 2                  |  |

1. Sex of triploids were twisted, Most ZZZ were females, and half ZWW were males

- **2. Sex reversed ones grew worse than un-reversed ones**
- 3. Growth performance of triploids was not good

Again, the origin of the W chromosome Z chromosome is essential for survival -----Z specific region or genes?



#### Merge of genetic map and physical map



In the genetic map some marekers were derived from Fosmid pairedend sequencing.

#### **Fosmid clone**

# In FISH mapping of Fosmid clonesWe found clone B106-62



Male: one pair of autosomes Female: one pair of autosomes and 2 signals on W chromosome

## Two-color FISH——18S + B106-62



Two kinds of signals coexisted on W chromosome.

On autosomes they were separate

## Chromosome walking using from B106-62



#### The same FISH signals on W as B106-62

## The origin of W chromosome



## Conclusion

- W chromosome was dissected and W specific library were constructed
- W specific markers identified and molecular sexing methods developed
- >WW super female is inviable
  - Either by gynogenesis or ZW X ZW crosses
- Triploids were successfully induced, sex of triploids were twisted
- Growth of triploids was not good
- Sex chromosome may be a "recent" evolutionary event in the tongue sole

## Acknowledgement

Xubo WANG Xiaohua SUN Haiyang YU Zhigang WANG Ji QI Chunmei LI Liming JIANG

All other members in my lab who have contributed to this work



# Thank you