Mapping and validation of a major QTL affecting resistance to Pancreas disease in Atlantic salmon

Serap Gonen¹, Matthew Baranski², Ingunn Thorland³, Ashie Norris⁴, Harald Grove⁵, Petter Arnesen⁴, Håvard Bakke⁶, Sigbjørn Lien⁵, Stephen C Bishop¹ and Ross D Houston¹

¹ The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
² Nofima, PO Box 210, 1431 Ås, Norway
³ Akvaforsk Genetics Center AS, Sjølseng, 6600 Sunndalsøra, Norway
⁴ Marine Harvest, Sandviksboder 78a, 5035 Bergen, Norway
⁵ Department of Animal and Aquacultural Sciences and Centre for Integrative Genetics, Norwegian University of Life Sciences, 1431, Ås, Norway
⁶ SalmoBreed AS, Bontelabo 2, 5003, Bergen, Norway

 \prec () \lesssim | | \land

- Atlantic salmon
 - 2 million tonnes (\$10 billion) production in 2012
- Pancreas disease (alphavirus)
 - Natural outbreaks reported at post-smolt stage
 - High levels of mortality and morbidity
 - Management practices in place

Introduction

- Selective breeding for improved disease resistance
 - Use full-sibs of challenge survivors
 - Limitations:
 - Requires yearly challenge tests
 - Does not capture within-family variation
- Individual rather than family-based selection
- Genetic markers

Introduction

- Genetic markers and selection
 - Characterise genetic architecture for resistance
 - Identify resistance QTL
 - Marker assisted selection (MAS)
 - Advantages:
 - Reduce need for sib-challenge tests
 - Exploits within- and between-family variation
- Genetic markers and selection in aquaculture
 - E.g. MAS for IPN resistance
 - Not yet widely applied for pancreas disease resistance

- Quantify and characterise the underlying genetic architecture for resistance to pancreas disease
 - Identify QTL and associated markers for use in selective breeding programs

Materials and methods

Population	POP 1	POP 2
Life stage	Fry (51 days post-hatch)	Post-smolt (333 days post-hatch)
Origins	Marine Harvest 2010 year class	SalmoBreed AS 2009 year class
Viral strain	SAV3	SAV3
Challenge protocol	Bath challenge	Intraperitoneal injection
Number of challenged individuals	5,558	4,946
Number of full- (half-) sibling families	218 (83)	284 (120)
Average number of offspring per family	25	17
		Great British Bioscience

Challenge mortality profiles

ROSLIN

Genotyping and analysis

- Within each population:
 - 1. Estimate heritability for resistance

- 2. QTL mapping
- 3. Association analysis

Population	POP 1	POP 2
Number of individuals	3,949	4,946
Number of full- (half-) sibling families	150 (72)	284 (120)
Average full-sibling family mortality	61 %	62 %
Heritability (observed binary)	0.34 (±0.05)	0.23 (±0.05)
Heritability (underlying liability)	0.5	0.4

QTL mapping

- POP 1 (fry)
 - Two-step approach
 - Step 1: Detect QTL
 - Sparse marker panel, sire to offspring
 - Step 2: Confirm and position QTL
 - Dense marker panel, dam to offspring
 - 20 paternal half-sib (55 full-sib) families
 - Intermediate levels of mortality
- POP 2 (post-smolt)
 - Single step combined approach
 - 120 paternal half-sib (284 full-sib) families

QTL mapping

- GridQTL
 - Half-sib regression-based interval mapping
 - Sib-pair IBD-based interval mapping
 - QTL significance using F-ratio thresholds
 - Chromosome-wide
 - 10,000 permutations
 - Genome-wide
 - 10,000 permutations
 - Bonferroni corrected P-value at the 5 % significance level

QTL mapping

ROSLN

20 Years of Pioneering Great British Bioscience

Is chromosome 3 the same QTL?

Association analysis

Freat British Bioscience

Chromosome

Discussion

- High heritability for resistance to pancreas disease
 - Selection for resistance is possible
- Common QTL on chromosome 3
 - Replicated in two independent populations
 - Similar mechanisms underlying resistance
 - Unrelated to barrier function
- Additional independent QTL
 - Life stage specific QTL

SNPs associated with QTL on chromosome 3

Acknowledgements

- Data
 - VESO Vikan
 - PHARMAQ AS
 - LGC Genomics

Assistance

- Roy Hjelmeland (Marine Harvest, Norway)
- Christian Wallace (VESO Vikan, Norway)
- Natalie Lowe (Roslin Institute, Scotland)
- John Taggart (Institute of Aquaculture, Scotland)

Thank you for your attention!

Nofima

Read more: Gonen et al. 2015, Heredity doi: 10.1038/hdy.2015.37

20 Years of Pioneering Great British Bioscience

marine harvest excellence in seafood

Salm Breed