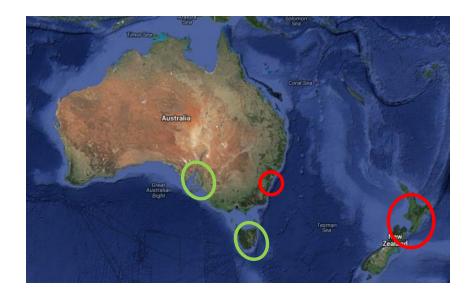


GENETIC VARIATION IN PACIFIC OYSTERS FOR RESISTANCE TO Ostreid herpesvirus-1

Peter Kube

Mike Dove, Matt Cunningham, Peter Kirkland, Wayne O'Connor, Nick Elliott

www.csiro.au


The Spread of Oyster Herpes Virus

Ostreid herpesvirus 1

- Affects only Pacific oysters
- New mircro-variant with high virulence

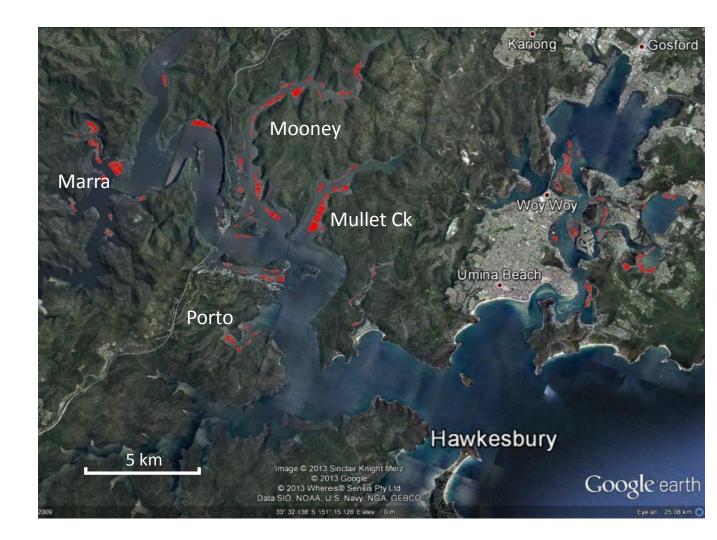
Outbreaks:

- France 2007-08
- New Zealand Mar 2010
- Australia Nov 2010

The Spread of Oyster Herpes Virus

SPREAD IN AUSTRALIA:

- Georges River Nov 2010
- Sydney Harbour 2011
- Hawkesbury River Jan 2013


Sydney Region New South Wales Central Coast

The Spread of Oyster Herpes Virus

- DAY 1 10 AM: First sighting (30% mortality on one lease)
- DAY 1 5 PM: mass mortality on that lease
- DAY 3: 10 million dead oysters (\$3M loss)
- DAY 8: Entire system affected

Aims

Breed for resistance to OsHV-1

The science challenge:

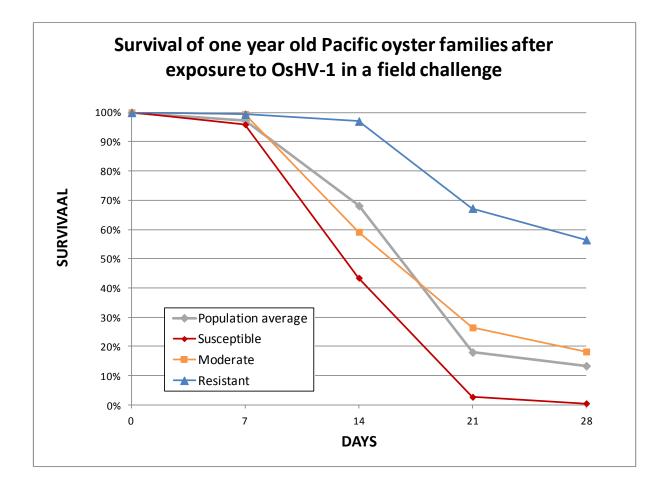
- Is there resistance in our population?
- Genetic parameters of resistance?
- How can we measure resistance?
- How long before economically useful resistance?

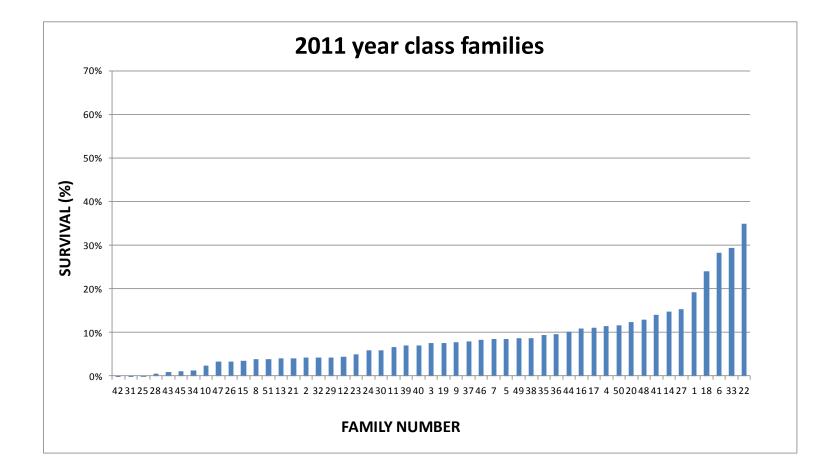
Data analysis and summary

- Australian breeding population (up to 9 generations)
- Six field challenges and two laboratory challenges
- Two ages (4 to 6 months and 12 months)
- Analysed using ASReml;
 Sire model with pedigree structure (binary data)

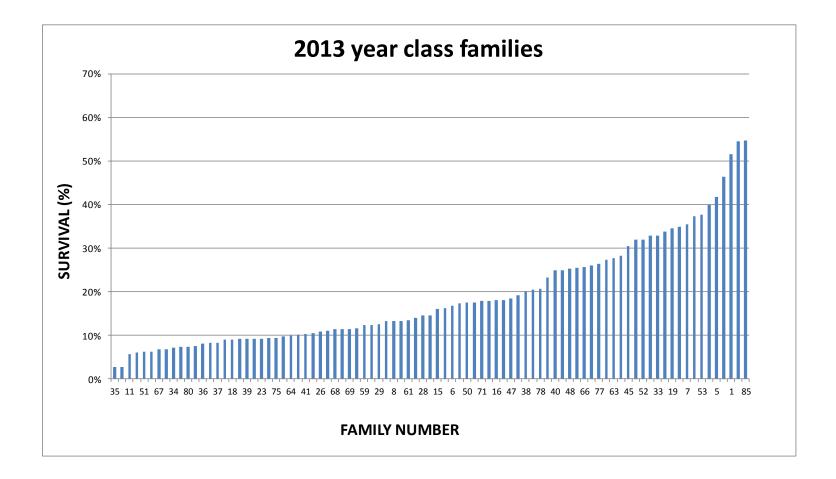
Number year classes challenged	3	2011, 2012, 2013
Total number of families	175	
Total number of parents	345	
Number animals challenged	56,658	

FIELD CHALLENGE NOV 2012 ADULTS (AGE 12 MONTHS)




SURVIVAL = 0%

Disease progression in a field challenge



Unselected families

Selected families

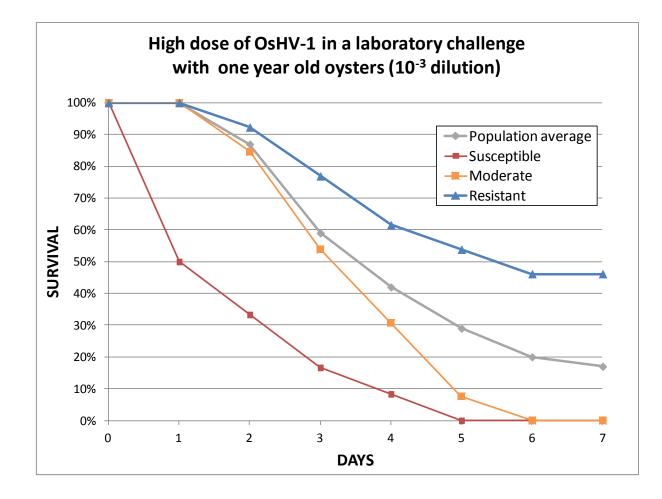
Difficult to get a good field challenge

TRIAL	Description	h²	Test day surviva	l
1	2011 YC spat	0.38	47%	\checkmark
2	2011 YC adults	0.18	20%	X
3	2012 YC spat	0.53	91%	×
4	2012 YC adults	0.60	29%	\checkmark
5	2013 YC spat (a)	-	No mortality	×
6	2013 YC spat (b)	-	No mortality	×
7	2013YC adults	0.46	18%	\checkmark

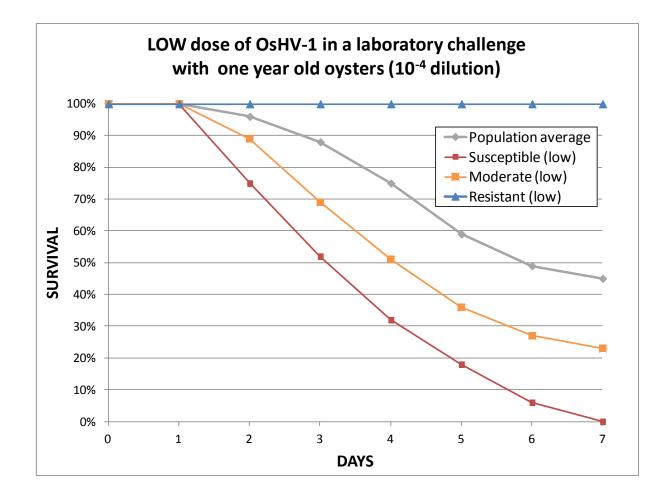


Laboratory Disease Challenge

Done in a biosecure laboratory (NSW Department of Primary Production)


Uses stock virus solution (cryo-preserved) stock

Immersion of relaxed oysters



Disease progression in a lab challenge

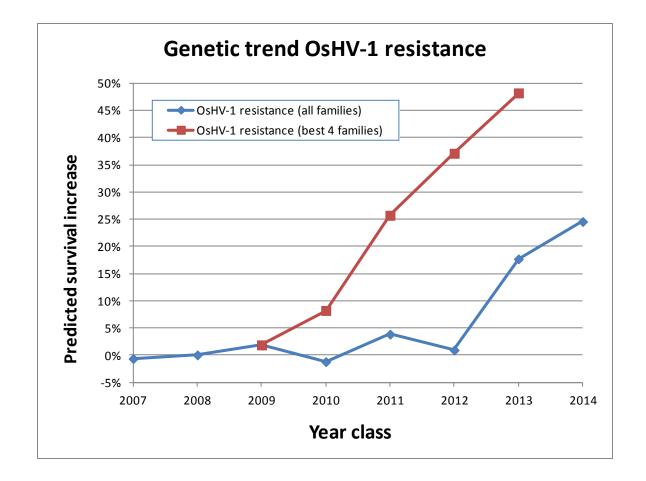
Disease progression in a lab challenge (low dose)

Genetic parameters – heritabilities

TRAIT	h² (<i>se</i>) observed	h ² underlying
Field survival (spat)	0.39 (<i>0.09</i>)	0.61
Field survival (adults)	0.27 (<i>0.04</i>)	0.55
Laboratory survival (spat)	0.18 (<i>0.11</i>)	0.28

Genetic parameters – genetic correlations

TRAIT	h²	h²	Genetic correlations r _g (<i>se</i>)		
	(observed)	(underlying)	Field suv. (spat)	Field suv. (adult)	
Field survival (spat)	0.39	0.61			
Field survival (adults)	0.27	0.55	0.85 (<i>0.08</i>)		
Laboratory survival (spat)	0.18	0.28	0.71 (0.30)	0.61 (0.24)	



Genetic correlations – test days

	Field challenge survival (r _g)				
	Day 7		Day 14	Day 21	
Day 14	0.74				
Day 21	0.02]	0.77		
Day 28	0.03		0.77	0.99	

Genetic gains

Conclusions

- There is genetic variation for OsHV-1 resistance in our population
- Field challenges presents logistic difficulties for applied breeding, and a reliable laboratory challenge is needed
- Selective breeding is providing a means to mitigate the impact and risk of this disease

Peter Kube

Aquaculture Geneticist, CSIRO Hobart, Australia t: +61 3 6232 5241 e: peter.kube@csiro.au

ACKNOWLEDGMENTS

CO-AUTHORS

Mike Dove	NSW DPI
Matt Cunningham	ASI
Peter Kirkland	NSW DPI
Wayne O'Connor	NSW DPI
Nick Elliott	CSIRO

FUNDING AND IN-KIND SUPPORT

Oysters Australia Australian Seafood CRC Fisheries R&D Corporation **Drakes Oysters**

www.csiro.au

