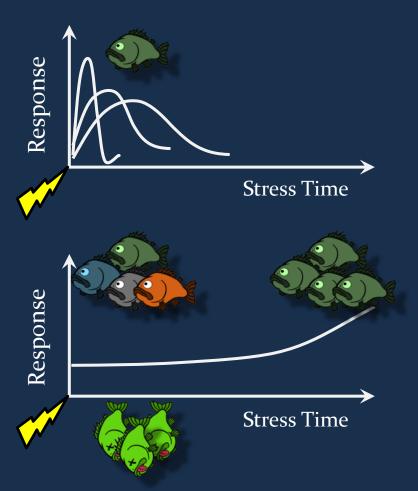
Laboratoire Adaptation & Adaptabilité des Animaux et des Systèmes

HERITABILITY OF COPING STYLES IN FARMED EUROPEAN SEABASS

ISGA XII, 2015

Allal F., Ferrari S., Horri K., Vidal M.-O., Ruelle F., Vandeputte M., Chatain B. Bégout M.-L.



"Coping" with changes



Individual response

Behavioral Physiological Acclimatization

Populational response

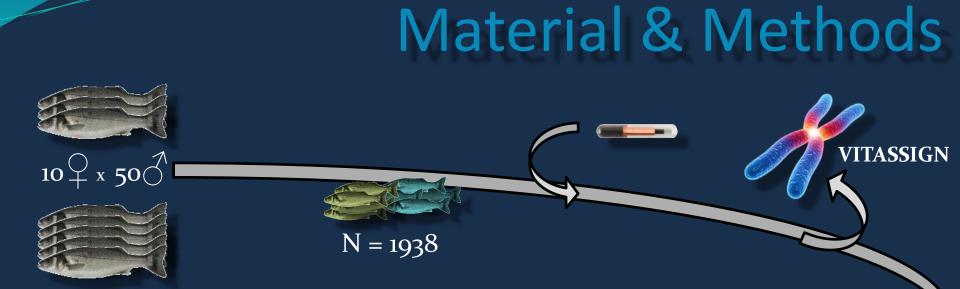
Mortality Fecundity shift →Modification of allele frequencies Changes occur at a genetic level

The Behavioral and Physiological adaptability defines " Coping Style"

Increase pathologies Decreased performance

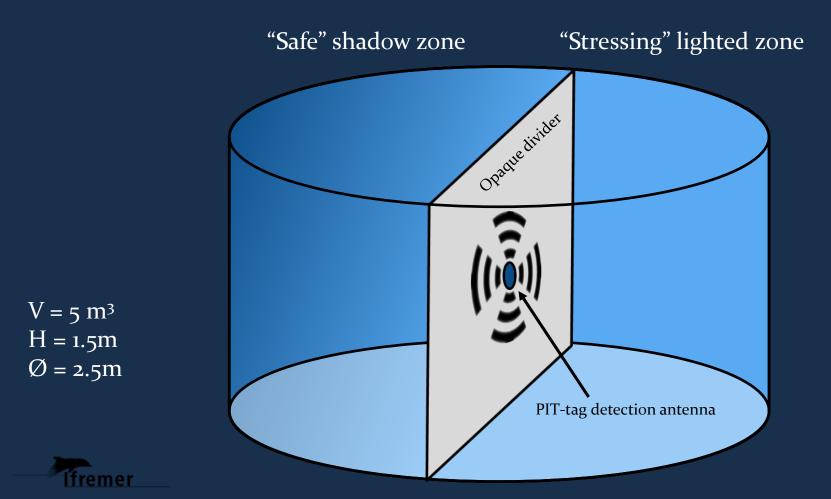
"Coping" with changes

The Coping Style distinguishes animals into two groups



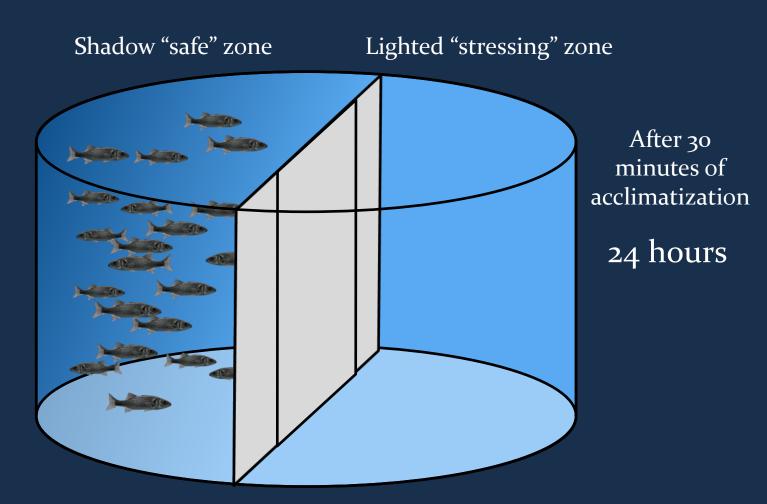
Is there a genetic component to these personality traits ?





Challenge: Creating behavioral tests compatible with a genetic study

Material & Methods



Material & Methods

Risk taking test

PIT-tag	1 st passage
#3830604	00:14:37
#3854641	00:38:45
#3795461	01:21:16
#3863145	01:37:24
#3897844	02:54:46

Material & Methods

Hypoxia avoidance test Shadow "safe" zone Lighted "stressing" zone Nitrogen Oxygen After 30 minutes of Passage O_2 sat. **PIT-tag** acclimatization #3852041 00:04:22 95% 2 hours #3830645 00:04:48 93% ~10% O₂ sat. #3496561 00:06:16 84% 83% #3863145 00:11:17 fremer

Results & Discussion

Group testing validation

	Hypoxia avoidance		Risk taking 1		Risk taking 2		Risk taking 3	
Sex	3	9	8	9	3	9	3	9
Proactive %	19	15	16	14	17	16	20	18
Reactive %	81	85	84	86	83	84	80	82
	$\leftarrow r_{\rm p} = 0.69 \text{ but} \qquad r_{\rm A} = 0.99(\pm 0.05) - 1(\pm 0.01)$						→ 0.01)	

Risk taking vs Hypoxia avoidance: $r_P = 0.10$; $r_A = 0.43(\pm 0.21)$

~20 % of fish are proactive No sex effect! Over time consistency of risk-taking behavior! r_A≈1 Hypoxia ≠ Risk taking

Results & Discussion

Heritability of behavior

Trait addressed	h^{2} (SE)
Hypoxia avoidance	0.23 (0.10)
Boldness (mean of the 3 risk taking tests)	0.42 (0.12)

→ Low but usable hypoxia avoidance heritability

- → High boldness heritability
- \rightarrow Boldness h² = weight h²
 - → we can expect similar selection response!

Results & Discussion

Genetic correlations between coping styles and phenotypic traits

	Weight (SE)	TGC (SE)	Gonads (SE)
Hypoxia avoidance	-0.56 (0.18)	-0.45 (0.15) ; -0.55 (0.11)	0.32 (0.24)
Boldness (mean of the 3 risk taking tests)	-0.24 (0.15)	-0.12 (0.27); -0.23 (0.11)	-0.73 (0.16)

There is a genetic link between personality and growth traits in sea bass

→ Hypoxia intolerant fish are significantly smaller
→ Bolder fish invest less energy in gonadal production

Conclusions

- Low hypoxia avoidance heritability $(h^2 = 0.23 \pm 0.10)$
- High boldness heritability (h² = 0.42 ±0.12)
- Hypoxia avoidance and Risk taking tests do not address the same personality trait in sea bass
- •Link between growth and personality
 - \rightarrow proactive < reactive

Looking for a boldness related QTL in sea bass!

Laboratoire Adaptation & Adaptabilité des Animaux et des Systèmes

Thanks for your attention!

