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Background

As aguaculture has developed, it has become apparent that for many (but
not all) species, control over sex ratio is desirable.

Fish (the vertebrates that didn’t leave the water) display an enormous
diversity in sex differentiation and determination (so do crustaceans!)
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NGS and GBS

Some (107?) years ago, a clear starting point for the analysis of sex
determination in a “new” species was not easy

In particular, molecular methods were still very laborious and expensive,
and not always very productive regarding sex determination (some
success)

For example, generating enough microsatellite markers to produce a
moderate (low!) density linkage map (200-500) and then genotyping 100
progeny (one family) was a very significant task

NGS has made huge differences to the time/cost and number of markers
involved in analysing sex determination (and many other traits)

GBS (genotyping by sequencing) is becoming key in this — several methods
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* GBS (genotyping by sequencing) is becoming key in this — several methods

(Only 3 presentations featuring RADseq at ISGA XI — how many at ISGA XII?)



RADseq

Baird et al. (2008) and subsequent variations

Powerful technique to generate and genotype markers, linkage maps and
analyse sex determination

Can generate linkage maps with thousands of SNP markers in a very short
time and fairly cheaply (~¥300 M reads of 100 bases for a few thousand
pounds/dollars/euros -> ~60-90 k loci -> ~4-8 k informative SNPs)

RADseq (and ddRADseq) analysis can be done in species with no prior
genomic information and often takes considerably less time than
producing the biological material

Good first step in analysis of sex determination in a “new” species ->
XX/XY, WZ/ZZ or something else?

We are currently working on species including Atlantic halibut, Nile tilapia
and European sea bass, also hapuku, arapaima



Standard RADseq
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N =100 Sbfl 3500-6500 SNPs
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2 lanes HiSeq <€12 k ~ 2 weeks seq.
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N =100 Sbfi,?? >>10,000 SNPs
(barcodes) (e.g. per family)
4 lanes HiSeq <€24k ~ 4 weeks seq.
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N = 100+ e.g.Sbfl+Sphl 500-1500 SNPs
(coverage variance) (e.g. per family)
2 lanes MiSeq <€2.5k 2 days seq.
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Atlantic halibut — XX/XY (no genome sequence)
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Sex association verification and sex prediction — halibut

KASP assay (broodstock)
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Tightly sex-linked SNPs can be used to predict phenotypic sex in broodstock —
now being applied in monosex production (testing of potential neomales)



Nile tilapia - oligogenic sex determination?
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KASP assay (broodstock)
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Nile tilapia — skewed sex ratios and temperature effects
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ddRADseq (mod. from Peterson et al. 2012) used in this study (641 SNPs)

Upper part shows QTL analysis of a family with a skewed sex ratio (64% males),
lower part based on reduced dataset (XY males removed)

Second sex determining locus detected in LG20

QTL on LG20 also showed chromosome-wide effect in another family with a high
temperature effect on sex ratio (also coincidence of GSD/TISD loci in LG1, 3, 23; cf

Luhmann et al. 2012)
(Palaiokostas et al. 2015)



Nile tilapia: selection for response to
temperature effects on sex ratio

100

Nile tilapia shows genetic
polymorphism for response of
sex ratio to early rearing (~10d)
at high temperature (36°C).
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Three generations of
bidirectional selection on a L.
Manzalla population produced
93 % males in H line and 50 %
males in L line at 36°C (both lines
close to 50% at 28°C).
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European seabass: polygenic + temperature effects
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European Seabass sex QTL analysis (RADseq)

F2 sib regression analysis

* F2 cross from extreme sex ratio
FOs
* Linkage map - 6706 markers
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* Minor effects of three QTLs
e Supports polygenic hypothesis
(presentation later)
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The curious case of zebrafish sex determination

Chromosome
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Ol s vasn sy d Zams T R T R R s s T i MR e v i S @S e
QM
=
-

-
o
|

! EERALA:

N
o
|

w
o

a

[ |
C 1 11

Physical position (Mb)
S
o

(4]
o

a

o)
o
(

70

-/

80

Sex determination in zebrafish poorly understood until recently, despite its importance as
model organism — variable and often highly distorted sex ratios

SNP-based mapping (RADseq and others) suggested polygenic sex determination in
domesticated zebrafish (QTLs shown by red and blue boxes above: Anderson et al. 2012)
Subsequent analysis of natural strains (using GWAS-RAD) showed WZ/ZZ system based in
chromosome 4 (Wilson et al. 2014) — function (almost) lost in domesticated strains



Not just fish — sea lice too
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RADseq used to isolate SNP markers in salmon louse (L. salmonis) strain
One SNP showed complete association with sex in this and three other
strains (A: heterozygous in females, homozygous in males — WZ/727)
SNP is in prohibitin-2 gene, which shows sex-dependent expression (B)

(Carmichael et al. 2013)



From mapping to sex determining genes

* Fine mapping, breakpoint analysis, etc

 Comparison to genome assembly (if available), synteny, etc

* Candidate genes

* Expression studies (targetted genes or broader
transcriptomic approaches)

* Epigenetics

* Knockout (e.g. CRISPR), gene transfer

e Confirmation of candidate genes

* GAS rather than MAS for monosex production



(Candidate) sex-determining genes in fish (all XX/XY spp.)

Species SD gene  Origin Genomic structure
Medaka ! DMY Duplicated Dmrt1b Y-specific

(Oryzias latipes)

Luzon ricefish 2 Gsdf Allelicon Y and X
(O. luzonensis)

Fugu 3 Amhr2 Allelicon Y and X (one SNP
(Takifugu rubripes) difference)
Patagonian pejerrey # amhy Duplicated amh Y-specific
(Odontesthes hatcheri)

Rainbow trout > sdY Similar to Y-specific
(Oncorhynchus mykiss) C-terminal of IRF 9

Nile tilapia ® amhy LG23 (in this popn)

(Oreochromis niloticus)

Takifugu rubripes (smithlabdb.usc.edu) Odontesthes hatcheri (irresistibleflyshop.com.ar)

IMatsuda et al., 2003; 2Hattori et al., 2012; 3Kamiya et al., 2012; *Hattori et al., 2012; >Yano et al., 2012; ® Eshel et al. (2012, 2014)



Atlantic salmon “sex test”
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(Image from John Taggart)



Concluding remarks

GBS offers a scalable, fairly quick and cost-efficient way for an
initial assessment of the sex-determining system in “new”
species

May lead to isolation of markers for MAS for monosex
development, identification of regions to search for candidate
genes, etc in sample sex determining systems (XX/XY, WZ/ZZ)

Can also help in elucidating more complex systems
(oligogenic, polygenic, GSD/TISD)



