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Background 
• As aquaculture has developed, it has become apparent that for many (but 

not all) species, control over sex ratio is desirable. 

• Fish (the vertebrates that didn’t leave the water) display an enormous 
diversity in sex differentiation and determination (so do crustaceans!) 
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Very few species of aquaculture 
interest  show differentiated sex 
chromosomes – examples in other 
fish species 

Power of DNA marker/genomics 
techniques has greatly increased 
over last decade 



NGS and GBS 

• Some (10?) years ago, a clear starting point for the analysis of sex 
determination in a “new” species was not easy 

• In particular, molecular methods were still very laborious and expensive, 
and not always very productive regarding sex determination (some 
success) 

• For example, generating enough microsatellite markers to produce a 
moderate (low!) density linkage map (200-500) and then genotyping 100 
progeny (one family) was a very significant task 

• NGS has made huge differences to the time/cost and number of markers 
involved in analysing sex determination (and many other traits) 

• GBS (genotyping by sequencing) is becoming key in this – several methods  
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(Only 3 presentations featuring RADseq at ISGA XI – how many at ISGA XII?) 



RADseq 

• Baird et al. (2008) and subsequent variations 

• Powerful technique to generate and genotype markers, linkage maps and 
analyse sex determination 

• Can generate linkage maps with thousands of SNP markers in a very short 
time and fairly cheaply (~300 M reads of 100 bases for a few thousand 
pounds/dollars/euros -> ~60-90 k loci -> ~4-8 k informative SNPs) 

• RADseq (and ddRADseq) analysis can be done in species with no prior 
genomic information and often takes considerably less time than 
producing the biological material 

• Good first step in analysis of sex determination in a “new” species -> 
XX/XY, WZ/ZZ or something else? 

• We are currently working on species including Atlantic halibut, Nile tilapia 
and European sea bass, also hapuku, arapaima 
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Standard RADseq 

ddRADseq 

BSA-ddRADseq? 

 N = 100+  e.g.SbfI+SphI  500-1500 SNPs 
(coverage variance)     (e.g. per family) 
2 lanes MiSeq     <€2.5 k    2 days seq. 

N = 25 families SbfI/SphI 500-1500 SNPs 
(sire, dam, male and female progeny pools)      
2 lanes MiSeq     <€2.5 k    2 days seq. 

e.g. repeat analysis with  
different enzyme 

  N = 100        SbfI , ??      >>10,000 SNPs 
(barcodes)                       (e.g. per family) 
4 lanes HiSeq     <€24 k    ~ 4 weeks seq. 



Atlantic halibut – XX/XY (no genome sequence) 

5764 SNPs in 24 linkage groups (1514 cM); sex determining locus in LG13 

Palaiokostas et al. (2013a)  



Sex association verification and sex prediction – halibut 

Tightly sex-linked SNPs can be used to predict phenotypic sex in broodstock – 
now being applied in monosex production (testing of potential neomales) 



Nile tilapia - oligogenic sex determination? 

Cross with balanced sex 
ratio: 
• Male map only 

(isogenic XX female 
used) 

• 3802 SNP markers 
• 1176 cM 
• XX/XY locus in LG1* 
• Draft genome 

assembly available 
 

*but in LG23 in some 
strains! 

 
 

 

Palaiokostas et al. (2013 b) 



Verification of LG1 sex  
association 

 in Nile tilapia 

Comparison to draft 
genome – but SD gene 
(Y) may not be present 
in XX genome! 



Nile tilapia – skewed sex ratios and temperature effects 

• ddRADseq (mod. from Peterson et al. 2012) used in this study (641 SNPs) 
• Upper part shows QTL analysis of a family with a skewed sex ratio (64% males), 

lower part based on reduced dataset (XY males removed) 
• Second sex determining locus detected in LG20 
• QTL on LG20 also showed chromosome-wide effect in another family with a high 

temperature effect on sex ratio (also coincidence of GSD/TISD loci in LG1, 3, 23; cf 
Luhmann et al. 2012) 

                                                    (Palaiokostas et al. 2015) 



Nile tilapia: selection for response to 
temperature effects on sex ratio 

Generations

0.0 1.0 2.0 3.0

%
 m

a
le

s

40

60

80

100

H36 

L36 

H28 

L28 

Nile tilapia shows genetic 
polymorphism for response of 
sex ratio to early rearing (~10d) 
at high temperature (36⁰C). 
 
Three generations of 
bidirectional selection on a L. 
Manzalla population produced 
93 % males in H line and 50 % 
males in L line at 36⁰C (both lines 
close to 50% at 28⁰C). 
 
Wessels and Hörstgen-Schwark (2011) 



European seabass: polygenic + temperature effects 

Vandeputte et al. (2007) 
Navarro-Martin et al. (2009) 
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h² of sex tendency= 0.62±0.12 
Gen corr with BW: rA= 0.50 ± 0.09 

 

Select for faster growth 

Change early thermal 
regime 

Increased proportion 
of females 

allegromar.com 

Females grow faster 
and mature later 



European Seabass sex QTL analysis (RADseq) 
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• F2 cross from extreme sex ratio 
F0s 

• Linkage map - 6706 markers 
(4817 cM) 

• Minor effects of three QTLs 
• Supports polygenic hypothesis 
 (presentation later) 



The curious case of zebrafish sex determination 

• Sex determination in zebrafish poorly understood until recently, despite its importance as 
model organism – variable and often highly distorted sex ratios 

• SNP-based mapping (RADseq and others) suggested polygenic sex determination in 
domesticated zebrafish (QTLs shown by red and blue boxes above: Anderson et al. 2012) 

• Subsequent analysis of natural strains (using GWAS-RAD) showed WZ/ZZ system based in 
chromosome 4 (Wilson et al. 2014) – function (almost) lost in domesticated strains 
 



Not just fish – sea lice too 

• RADseq used to isolate SNP markers in salmon louse (L. salmonis) strain 
• One SNP showed complete association with sex in this and three other 

strains (A: heterozygous in females, homozygous in males – WZ/ZZ) 
• SNP is in prohibitin-2 gene, which shows sex-dependent expression (B) 

 
                                         (Carmichael et al. 2013) 

KASP assay 



From mapping to sex determining genes 

• Fine mapping, breakpoint analysis, etc 
• Comparison to genome assembly (if available), synteny, etc 
• Candidate genes 
• Expression studies (targetted genes or broader 

transcriptomic approaches) 
• Epigenetics 
• Knockout (e.g. CRISPR), gene transfer 
• Confirmation of candidate genes 
• GAS rather than MAS for monosex production 



(Candidate) sex-determining genes in fish (all XX/XY spp.) 

Species SD gene Origin Genomic structure 

Medaka 1 

(Oryzias latipes) 
DMY Duplicated Dmrt1b Y-specific 

Luzon ricefish 2 

(O. luzonensis) 
Gsdf Allelic on Y and X 

Fugu 3 

(Takifugu rubripes) 
Amhr2 Allelic on Y and X (one SNP 

difference) 

Patagonian pejerrey 4 

(Odontesthes hatcheri) 
amhy Duplicated amh Y-specific 

Rainbow trout 5 

(Oncorhynchus mykiss) 
sdY Similar to  

C-terminal of IRF 9 
Y-specific 

Nile tilapia 6 

(Oreochromis niloticus) 
amhy LG23 (in this popn) 

Takifugu rubripes  (smithlabdb.usc.edu) Odontesthes hatcheri      (irresistibleflyshop.com.ar) 

1Matsuda et al., 2003; 2Hattori et al., 2012; 3Kamiya et al., 2012; 4Hattori et al., 2012; 5Yano et al., 2012; 6 Eshel et al. (2012, 2014) 



Atlantic salmon “sex test” 
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Concluding remarks 

• GBS offers a scalable, fairly quick and cost-efficient way for an 
initial assessment of the sex-determining system in “new” 
species 

• May lead to isolation of markers for MAS for monosex 
development, identification of regions to search for candidate 
genes, etc in sample sex determining systems (XX/XY, WZ/ZZ) 

• Can also help in elucidating more complex systems 
(oligogenic, polygenic, GSD/TISD) 


