Asian Seabass Genome Project: A status report

László Orbán, on behalf of the The Asian Seabass Genome Consortium

Temasek Life Sciences Laboratory, Singapore; Dobzhansky Center, St. Petersburg, Russia; Pacific Biosystems, USA; SANBI, Capetown, South Africa; Max Planck Institute for Mol. Gen., Berlin, Germany; Chinese University of HK, Hong Kong; Centre for Comparative Genomics, Murdoch University, Australia; IGIB, New Delhi, India; Georgikon Faculty, University of Pannonnia, Keszthely, Hungary;

More people, less fish

Population 7 billion

Depleted oceans

THE END OF THE LINE HOW EVERTISHING IS CHANGING THE WORLD AND WHAT WE EAT

Source: National Geographic endoftheline.com

Outline

- Introducing the Asian seabass and the selection program;
- Status report on the Genome (and Transcriptome) Project;
- Early applications: phylogeography and sex change;
- Summary.

Asian seabass (Lates calcarifer)

- Barramundi (AUS);
- Euryhaline, catadromous predator;
- Protandrous (male-first) hermaphrodite;
- Distributed over a wide geographical area;
- Cultured mostly by smaller farms, a few selection programs;

Asian seabass (Lates calcarifer)

- Barramundi (AUS);
- Euryhaline, catadromous predator;
- Protandrous (male-first) hermaphrodite;
- Distributed over a wide geographical area;
- Cultured mostly by smaller farms, few selection programs;
- TLL-AVA collaboration: Selection program in its 9th year – first mature F2s are ready for crosses;
- Increased growth rate.

Asian seabass selection program (timeline)

- 2004-2011: marker-assisted selection program with the Yue group
- Increased growth rate F2 grows >20% faster than unselected;
- 2011: received S\$10M grant from NRF for 5 yrs;
- Genomic selection polygenic traits;
- Nutrigenomics and disease resistance;
- Start parallel program for salt tolerant tilapia.

Outline

- Introducing the Asian seabass and the selection program;
- Status report on the Genome (and Transcriptome) Project;
- Early applications: phylogeography and sex change;
- Summary.

Asian seabass genome – what was known

Genome size: 700 Mb

2n = 48

Genetic linkage map (high density)

Physical map

Expected gene count: 26,000-27,000

Repeat inventory

Kuznetsova et al., Front. Genet. (2014)

Asian seabass Genome Assembly Plan

Visit Poster 88

on the Sequencing and assembly of a 10 Mb region of the Asian seabass genome containing growth-associated QTLs

Asian seabass - Genome Sequence Datasets

Genome assembly - the first try

Siddarth Singh, Pacific Biosystems Mike Schatz, CSH Labs

Final genome assembly

Siddarth Singh, Pacific Biosystems Mike Schatz, CSH Labs Lok Lab, CUHK, Hong Kong Sivasubbu Lab, IGIB, New Delhi, India

Current status and improvement efforts

- Validation by 80X Illumina-reads mapping
 - 96% of reads mapped as proper pairs
- Gene annotation underway
- Generated optical map data *de novo* assembled and used to place PacBio genome contigs
 - 79.8% similarity between the optical map and sequence assembly

	PacBio	Optical Map
# contigs	3,807	3,333
Contig N50	1.2 Mb	6.2 Mb
Maximum	18.9 Mb	20.6 Mb

• Alternative Falcon assembly underway

Transcriptome sequencing and assembly

 >1 billion reads from various organs of multiple individuals and 3 NGS platforms were assembled in a step-wise manner

>80% of the expected protein-coding loci obtained,
58% of these represented by a predicted FL-cDNA sequence

Thevasagayam et al., J. Mar. Sci. Eng. (2015)

Outline

- Introducing the Asian seabass and the selection program;
- Status report on the Genome (and Transcriptome) Project;
- Early applications: phylogeography and sex change;
- Summary.

Potential benefits of sequenced genomes

- Info on coding regions;
- Info on regulatory regions & pathways;
- Comparative/evolutionary genomics;
- New platforms (chips, RNAseq, GBS, methylome, etc.);
- Re-sequencing of variants;
- Rapid identification of mutations.

Molecular evidence points to the existence of two Asian seabass species

Ward et al., J. Fish Biol. (2008); Pethiyagoda & Gill, Zootaxa (2012) Vij et al., Frontiers Marine Science (2014)

Resequencing 65 genomes reveals clear signs of admixture n the SEA region

Andrey Yurchenko, St. Petersburg, Russia; unpubl.

Asian seabass (Lates calcarifer)

- Problem: Protandrous (male-first) hermaphrodite;
- Zebrafish can be used as a model to understand sex change.

Orban et al., Mol. Cell. Endocrinol. 312: 35-41 (2009)

Natural sex reversal in Asian seabass

Unusual individuals: 'reluctant' males and primary females

Guiguen et al., Env. Biol. Fish. 39: 231-247 (1994)

Array-based transcriptomics: The transforming gonad returns to a near-undifferentiated stage before initiating feminization

Jiang et al., Ph.D. Thesis (2014)

Summary – Asian seabass Genome

- Genome is sequenced (170X);
- Assembly is based on PacBio data, Illumina validates;
- Optical mapping showed improvements;
- International consortium for annotation;
- Multiple benefits;
- (Seq and assembly of Mozambique tilapia genome is in progress.)

Genome of the Mozambique tilapia

C-value (pg): 0.81-1.0 (Animal Genome Size Database) Diploid Chrom number (n): 44 Genome Size: ca. 1 Gb

- Different approach from the ASB
 - 6 Short-insert PE (SIPE) 60X
 - 3 Long-insert MP (1, 2, 3 kb) 30X
 - Lucigen Long-insert MP (8kb) 3X
 - Lucigen Fosmid MP (40kb) 3X
 - Pacbio sequence data pending
- De novo assembly is underway
 - V1: SIPE-only assembly by MaSuRCA

Assembly size	964 Mb
# of contigs	173,146
Max length	257.3 kb
N50 length	15.3 kb

Liew Woei Chang, Shen Xueyan & team

RGG:

Shubha Vij Inna Kuznetcova Woei Chang Liew Xueyan Shen Natascha May Prakki Sri Datta Jolly M. Saju Purushothaman K. Shawn Ngoh Pranjali Bhandare

Farm teams Genhua Yue & team Huan Sein Lim & team

TLL Facilities

RGG Alumni:

Preethi Ravi Rajini Sreenivasan Laura Casas Alex Chang Mohd. Sorowar Hossain Xingang Wang Richard Bartfai Keh-Weei Tzung Hsiao Yuen Kwan Doreen Lau Junhui Jiang

Collaborators: Alan Christoffels (Capetown) Si Lok (HK) Matt Bellgard (Murdoch) Mike Shatz (CSH) PacBio

Aleks Komissarov & Andrey Yurchenko (St. Petersburg) Heiner Kuhl (Berlin) Dean Jerry (Queensland)

National Research Foundation

Near future: Integrated systems applied to several fish species

Present: Genomic selection on A. seabass & tilapia

Past: MAS on seabass

Photo: http://faiti oncame is.com