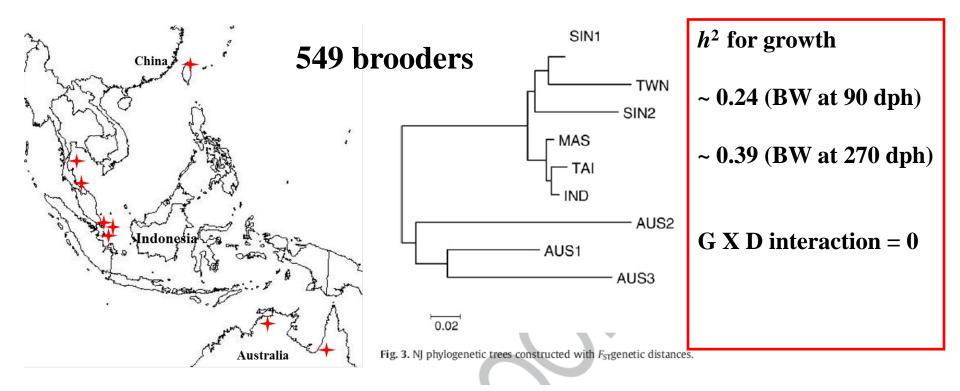
Status of the Breeding Program of Asian Sebass


Gen Hua YUE

Temasek Life Sciences Laboratory, Singapore genhua@tll.org.sg

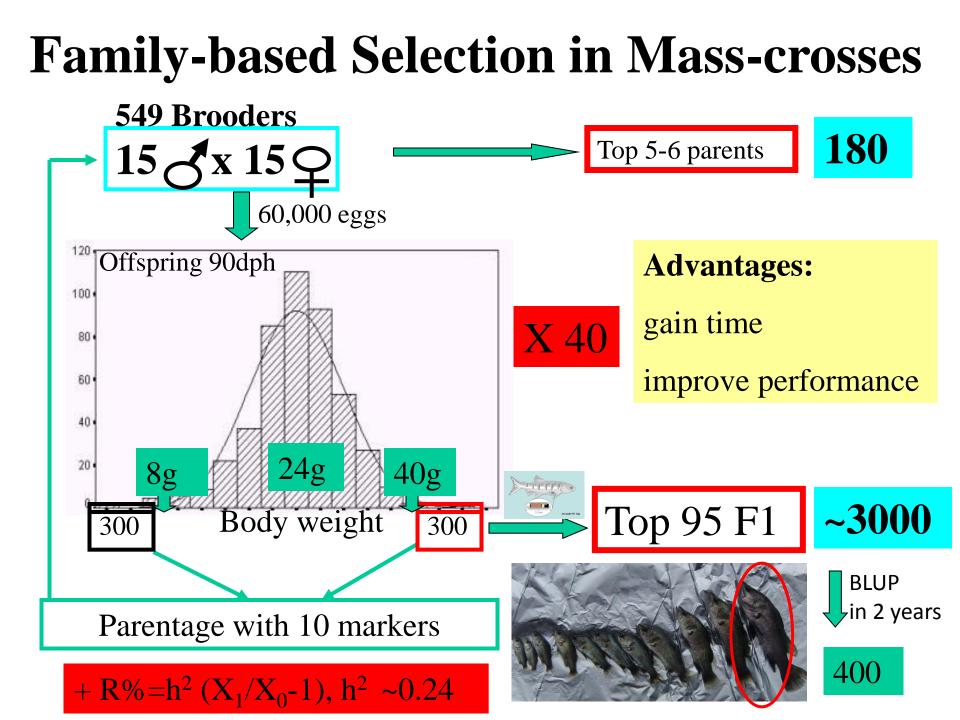
Founder Population and Genetic Parameters

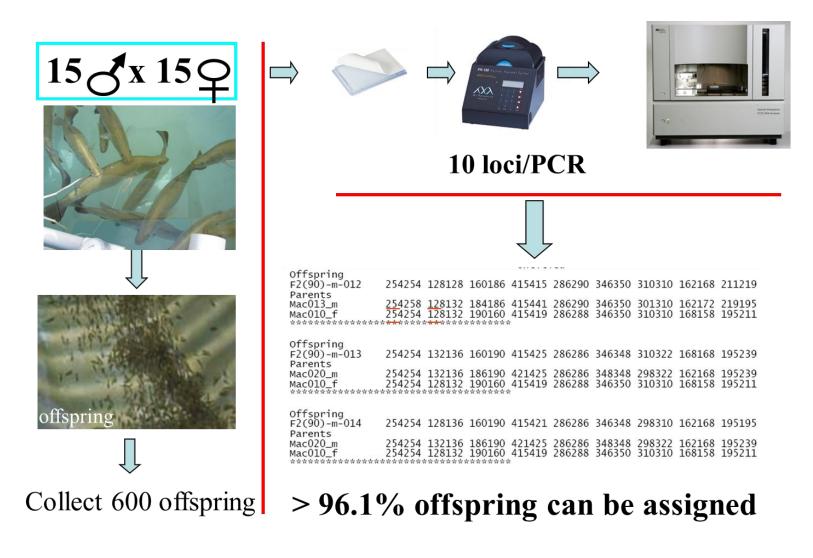
Genetic diversity in 9 Asian seabass populations

	Malaysia	Singapore	Thailand	Indonesia	Aus1	Singapore	Aus2	Aus3	Taiwan
n	165	104	132	148	32	32	26	71	62
Α	10.21	9.14	10.71	10.57	4.93	8.21	3.57	3.79	7.36
AR	7.74	7.6	8.5	8.23	4.8	7.89	3.57	3.72	6.65
He	0.76	0.75	0.78	0.76	0.6	0.74	0.47	0.55	0.68
Ho	0.71	0.74	0.73	0.74	0.55	0.66	0.52	0.65	0.66

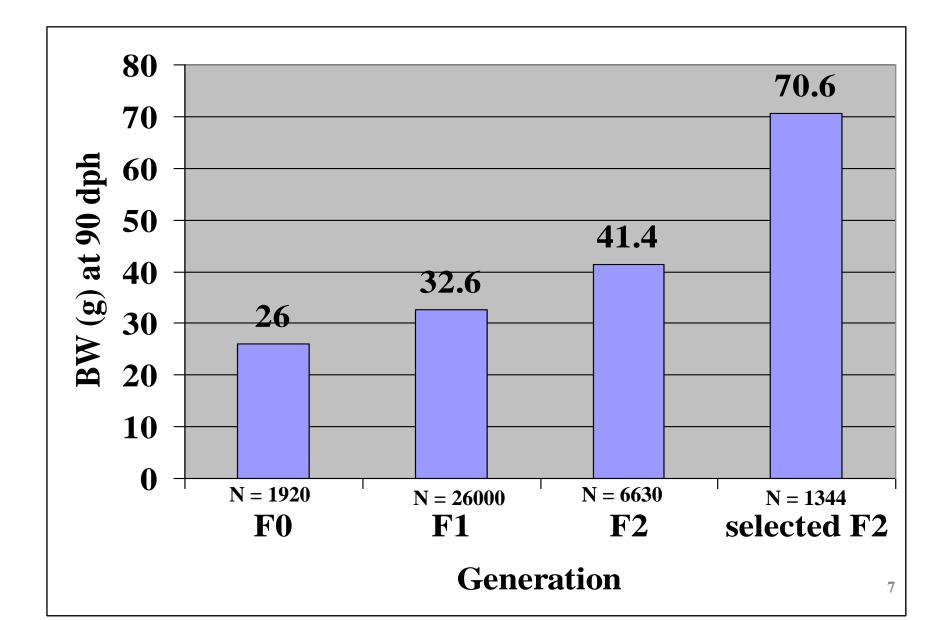
Traits Selected

1. Growth (from 1st generation)


2. Resistance to bacterial and viral diseases (from 2nd generation)



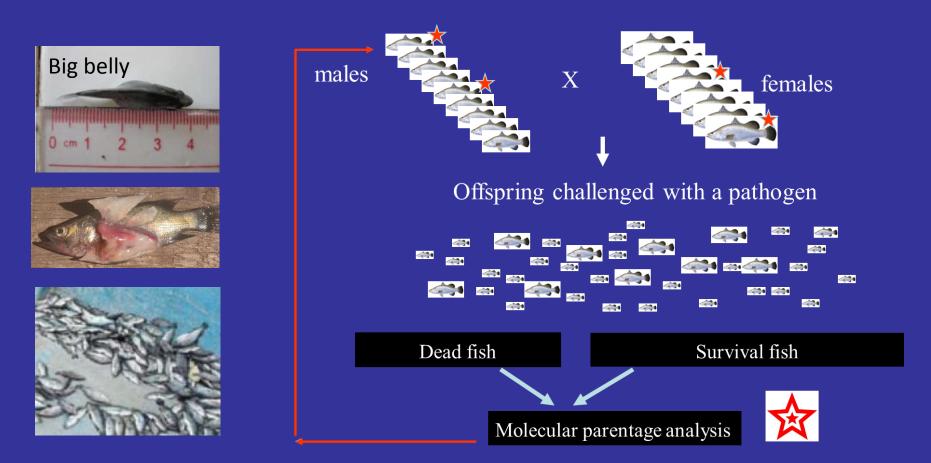
3. Content of omega-3 in meat (from 2nd generation)



Molecular Parentage Analysis

Genotyping > 40,000 fish/year since 2004

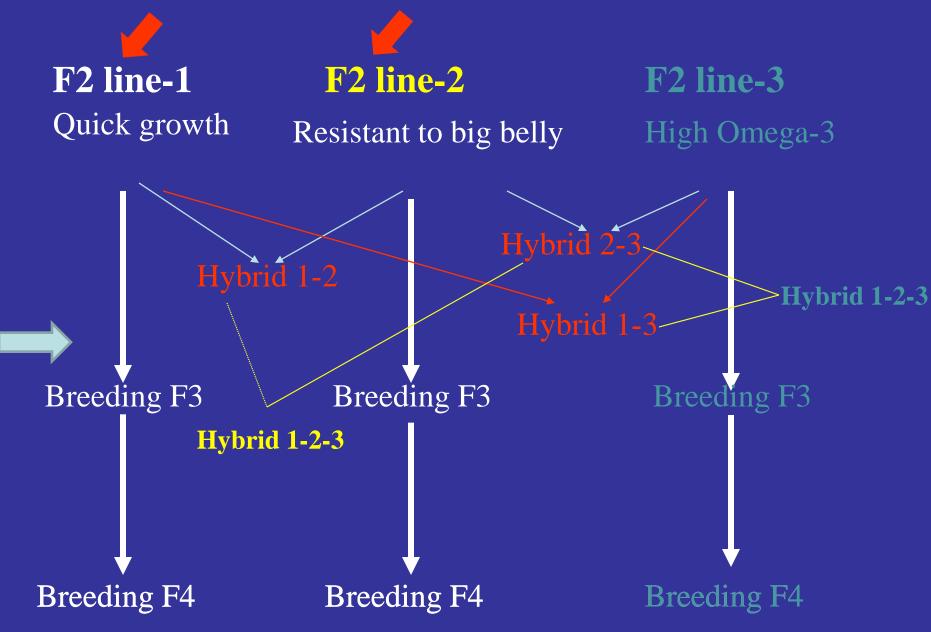
Body Weight Improvement of Asian Seabass



Genetic Diversity in Selected F1 Individuals

Population	n	A	He	Но	f
Brooders	549	10.22	0.745	0.696	0.0650
Selected F1	1200	9.80	0.727	0.716	0.0150
Farm's brooders	104	8.11	0.719	0.740	-0.0290
Farm-F1	26	4.33	0.644	0.748	-0.0160
Farm-F1	105	4.11	0.541	0.603	-0.0114

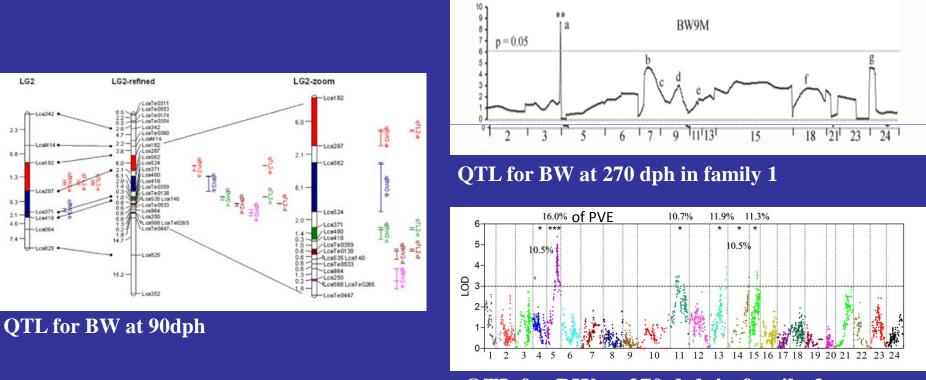
n: number of brooders; *A*: allele number; *Ho*: observed heterozygosity; *He*: expected heterozygosity; and *f*: inbreeding index


Selection for Resistance to Diseases

We are working on resistance against nodavirus, iridovirus & cacterial diseases

Establishing lines

Genomic Resources for Asian Seabass


• **DNA markers > 60,000**

- Marine Biotechnology (2001), Molecular Ecology Notes (2002), Aquaculture (2006, 2009), Plos One (2014), Fish and Shellfish Immunology (2014), Fisheries Research (2015), Conservation Genetics (2015)
- cDNA, BAC Libraries and RNA-seq
 Animal Genetics (2006), BMC Genomics (2008), Plos One (2010), DNA Research (2011, 2013)
- Linkage and physical maps Genetics (2007), BMC Genomics (2011), Plos One (2010, 2012)
- Candidate genes and MicroRNA Animal Genetics (2006, 2011, 2012), Plos One (2011, 2013), Animal (2012)

QTL for important traits

BMC Genomics (2006), Animal Genetics (2008), BMC Genomics (2011, 2013), Marine Biotechnology (2011, 2013, 2014)

QTL for Growth

QTL for BW at 270 dph in family 2

- Only few QTL for growth were identical at different developmental stages.
- Large number of suggestive QTL and a few significant QTL for growth
- Most QTL are family-specific with small effects (PVE: $\leq 16\%$)

Mapping QTL for Omega-3 in Meat

F2 individuals, 123 markers								C analys	
Traits	QTL ID	Linkage	Peak position	Marker	LOD		Estimated mean of the QTL		
	-	Group	(cM)	on Peak	on Peak	mu ac{00}		mu bc{00}	mu_bd{00
C20:5	C20:5a	LG2	24		5.59	6.9	6.7	8.3	8.4
EPA	C20:5b	LG2	35.595		64.38	6.9	7.0	9.2	9.0
	C20:5c	LG7	6.943	LcaTe0598	3.1	6.8	6.9	7.0	7.0
	C20:5d	LG19	19.795		39.28	6.9	7.0	3.9	3.9
C22:5	C22:5a	LG2	26		9.1	4.3	5.2	5.3	4.2
DPA	C22:5b	LG2	30.595		3.43	4.3	4.5	4.9	5.3
	C22:5c	LG5	1.19	LcaTe0181	3.29	4.4	4.2	4.3	4.2
	C22:5d	LG6	20.067		23.98	4.4	4.4	7.6	6.6
	C22:5e	LG9	1		3.74	4.3	4.4	4.3	4.4
	C22:5f	LG9	15.91		3.81	4.3	4.4	4.4	4.4
	C22:5g	LG14	22.22	Lca633	1.97	4.3	4.4	4.3	4.4
	C22:5h	LG24	1		2.64	4.3	4.3	4.4	4.4
C22:6	C22:6a	LG6	4.662		2.93	14.8	17.2	16.0	16.8
C22:0									
DHA	C22:6b	LG6	16.91	LcaTe0176	3.01	14.8	12.7	15.0	14.6

LcaTe0157 2.51

C22:6d

LG24

14.47

Sixty-two suggestive QTL for different fatty acids were detected on the whole genome. Multiple QTL for *n*-3 PUFA fatty acid traits in flesh were identified and their effects are small.

14.8

15.5

Xia JH et al. Marine Biotechnology: 2014

16.7

15.9

QTL Mapping for Resistance to NNV

Five significant QTL located in four LGs and eight suggestive QTL in seven LGs were identified for resistance to NNV. These QTL explained 2.2 - 4.1% phenotypic variance.

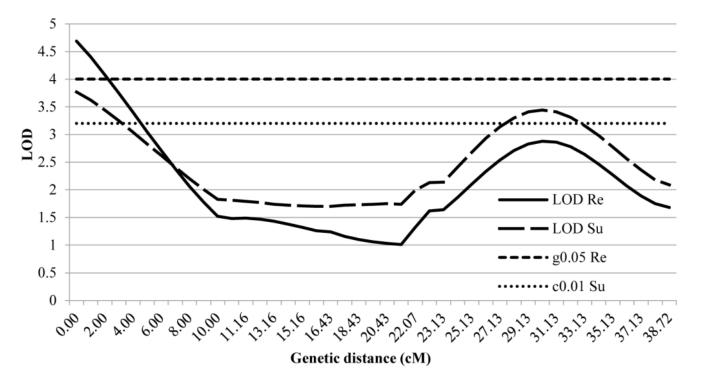


Fig 1. QTL for resistance and survival time in LG 20 of Asian seabass fingerlings.

Summary of QTL Mapping

- Most QTL for growth are family-specific. The effects of QTL are small.
- Only few QTL for growth are identical at different developmental stages.
- Multiple QTL for Omega-3, with small effects were mapped to several chromosomes.
- The effects of QTL for resistance to NNV are small.

Moving from QTL Mapping to GWAS

- Marker-Assisted-Selection (MAS)
 - Only significant markers are used for selection.

Conventional marker aided selection

• 88

• GWAS to Genomic Selection (GS)

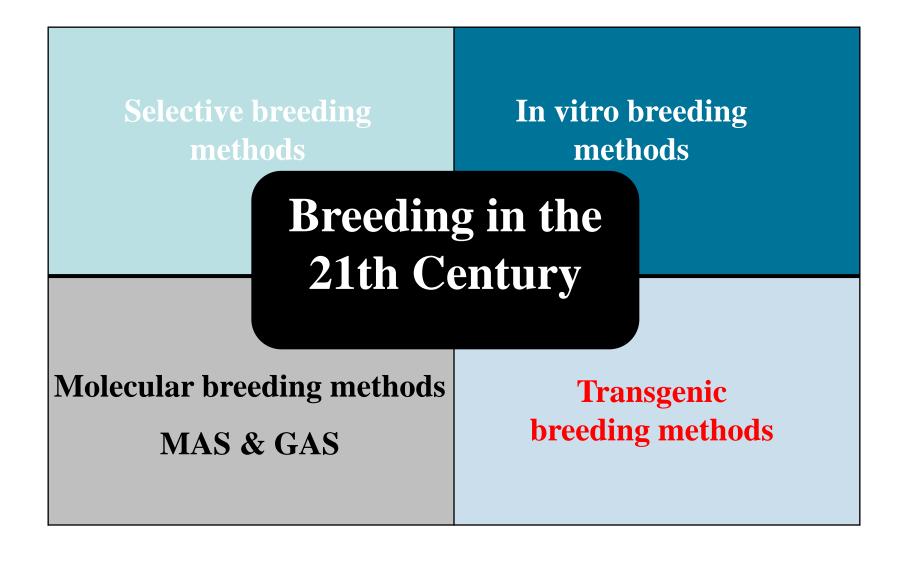
- Requires genome-wide markers that are used to develop a prediction model for estimating a breeding value for each individual
- Marker/QTL effects are estimated for individuals in a breeding population without phenotyping

Genotyping cost is a big issue

Acknowledgements

- TLL management
- Marine Aquaculture Center, AVA
- Prof. Laszlo Orban
- Prof. Jimmy Kwang
- Prof. Wong Sek Man
- Prof. Hew Choy Leong
- Mr. Huan Sein Lim
- Sequencing facility
- All lab members

Funding



NATIONAL RESEARCH FOUNDATION

Breeding

