Tilapia genetic improvement:

achievements and future directions

Hans Komen, Animal Breeding & Genomics Centre,

Wageningen University

John Benzie, Program leader genetics, WorldFish

Nile tilapia: a fast growing herbivore

In 2012 the FAO listed world Nile Tilapia production at 3,5 million mt,

valued at \$5 billion USD.

56

VGKOK

2002-2013

Breeding programs for Tilapia (all species)

	All	Family selection	
	programs	Private	Public
China	16	5	2
Thailand	10	2 (3)	
Egypt	1		1
Mexico	9	3	
Brazil	6	5	× 1
Peru	2	2	
Colombia	6	1	
Ecuador	2	1	
Total	52	19	4

Source: www.inocap.no / year 2014

GIFT – a brief history

WAGENINGEN UNIVERSITY WAGENINGEN UR

Examples of commercial strains with ancient GIFT 'heritage'

Genomar supreme tilapia

Spring genetics

ProGift Hainan

Realized genetic gains in harvest weight

Strain	Avg Gain %/gen	reference
GIFT Base to G9 ¹⁾	7-9	Khaw, 2008
GIFT G6 to G14 ²⁾	12.5 ->5*	Khaw, 2010
ProGift Hainan G2 to G6 ²⁾	13.2 ->5.3*	Thodesen, 2011
Nicanor G0-G3 ²⁾	3.5	Gjerde, 2012
FaST G0 to G12 ²⁾	12.9	Bolivar and Newkirk, 2002

- 1) Relative to unselected base (cryopreserved sperm)
- 2) Regression on EBV
- *) reduction due to decreased selection intensity in later generations

Benchmarking: growth rate

 $TGC = [(HW)^{0.33} - (SW)^{0.33}] / T*days *100$

i.e. W≈ L³

TGC can be used to predict weight at given age and temperature

TGC can be used to compare performance across strains and environments

A comparison across strains

environment	TGC	Strain
Pond	1.56	Sagana, Base Pop+1, Kenya;
Cage	5.05	DroCIET C12 Chipa
Pond	4.67	Progiri, Giz, China
Pond	3.11	CIET C12 Viotnam
River cage	3.85	GIFT GIS, Vietnam
RAS	4.46	G6 (Base AIT x GIFT)

30-35% protein diets

Reduction in grow-out time due to selection (days to 1 kg)

WAGENINGEN UNIVERSITY

Correlated responses to selection

Shape and ellipticity

 $E_{L-H} = \frac{(L-H)}{(L+H)}$

Blonk, Aquaculture 307, 6-10

Shape is a low-heritable trait with genetic correlation to growth

Trait	TGC	E _{L-H}	E _{L-T}	E _{H-T}
нพ	0.94	0.47	-0.15	-0.42
TGC		0.15	-0.42	-0.52
E _{L-H}		0.08		
E _{L-T}			0.14	
E _{H-T}				0.08
	Trong, Aqu	aculture 384-3	387, 119	

WAGENINGEN UNIVERSITY WAGENINGEN UR

Fish selected for high growth rate become more round & thicker

Fillet weight and Fillet %

Fillet	t Weight	Fillet-%	6	ΔG F-%	reference
h ²	r _g HW	h²	r _g HW		
0.24	0.99	0.12	0.74	-	Rutten, 2005
0.33	0.96	0.25	0.44	No reps.	Nguyen, 2010
0.16	0.99	0.06	0.21	0.28%	Gjerde, 2012
0.30	-	0.17- 0.23	0.09	0.3%	Thodesen, 2012

selection for harvest weight will increase fillet yield by correlated response

Maturity: correlations with HW

- Kronert, 1989: zero genetic correlation
- Longalong, 1999 (visual inspection)

Body weight records	Progeny group		Significance level (P) ^a	
	LFM	HFM		
Stocking	4.06 ± 0.20	4.23 ± 0.15	ns	
Intermediate recording				
Females	113.68 ± 4.81	125.82 ± 3.51	(0.0523)	
Males	149.94 ± 6.47	151.62 ± 4.16	ns	
Harvest				
Females	133.62 ± 4.61	139.41 ± 3.41	ns	
Males	181.86 ± 7.75	204.94 ± 5.95	0.0269	

Charo-Karisa, 2007 (dissected gonads): 0.18 ± 0.24

Genetic correlations with HW: egg size and number

	NEGG 0.08	RFEC 0.05	EGGW 0.05	EGGD 0.05
нพ	0.51 ± 0.29	- 0.72 ± 0.14	- 0.48 ± 0.41	-0.50 ± 0.64
NEGG		0.99 ± 0.01	-0.74 ± 0.50	-0.40 ± 0.52
RFEC			0.25 ± 0.51	-0.07 ± 0.81
EGGW				0.79 ± 0.60

Summary-I

Phenotypic trends suggest considerable improvement in growth rate

Correlated response in

- fillet yield small but positive
- "age at maturity" probably zero

relative fecundity and egg size negative?

Future directions: the yield gap

Production efficiency

PE = Total net weight gain at Harvest Total feed used or procured

loss from mortality due to

- + disease
- + handling/grading
- + escapes
- + predation

over entire production cycle.

Estimated mortalities (%) during growout from case studies

Egypt	25-60
Vietnam	25-50
Thailand	35-50
Bangladesh	30
Philippines	40

Courtesy: Krishen Rana

Overall Performance of Diets - FCR

	China	Thailand	Philippines	Eg	ypt	Gha	ana
							_
System	Pond	Pond	Cages/pond	Cage	Pond	Cage	Pond
Comm. Feed	1.69	1.4-1.6	1.5 -1.7	1.3-1.7	1.4-1.9	1.2-1.4	1.8-2.3

- Irrespective of country or system PE in similar range
- Significant effort still devoted to nutritional quality/ formulations/substitutions
- What about genetics?

Genotype by Environment interaction: Diet might be important

35% protein -> 3.8

Natural feed -> 2.2

r_g HW: 0.7-0.9

heterogeneity of variance

GxE: mixed sex vs all-male (Kenya)

Parameter	Traits				
	HW	DGC	L	Н	
h^2	0.24 ± 0.07	0.32 ± 0.07	0.16 ± 0.04	0.12 ± 0.02	
r_A	0.74 ± 0.14	0.59 ± 0.10	0.77 ± 0.09	0.46 ± 0.09	

Selection and feed efficiency....

Selection for growth (increased harvest weight) should be accompanied by evaluations on realized FCR

Harvest weight or Growth rate:

WAGENINGEN UNIVERSITY WAGENINGEN UR

Predicted economic values for growth rate

Limitation	RAS	Cage	Pond
Density	+	+	+
Farm quota		0	0
Nitrogen	0		0
0 ₂		0/+	0

Summary-II

- Impact in the field is lacking due to sub-optimal farming systems (high mortality) and low economic value for harvest weight
- Bio-economic analysis can help to understand the yield gap
- Selective breeding programs for tilapia need to focus on production efficiency

Thank you for your attention

Trong Quoc Trinh, RIA-2